Литература Дифра́кция во́лн в старой литературе также диффракция [1], от лат diffractus; букв. «разломанный»


Download 65.38 Kb.
bet3/5
Sana17.06.2023
Hajmi65.38 Kb.
#1533560
TuriЛитература
1   2   3   4   5
Bog'liq
DIFAKSION RUS

Дифракция и интерференция
Дифракция неразрывно связана с явлением интерференции. Фейнман вообще не различает эти явления, считая различие в терминологии делом привычки: при малом количестве источников говорят об интерференции, а при большом — о дифракции[11]. Со времён Френеля явление дифракции трактуют как случай интерференции вторичных волн[2].
В средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика, градиентные волноводы, мираж). При этом волна также может огибать препятствие, однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики.
Вращение плоскости поляризации световой волны в оптически активной среде дифракцией не является, хотя и единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации, в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу.
С точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).
Оптика кристаллов, имеющая дело с оптической анизотропией среды, также имеет лишь косвенное отношение к проблеме дифракции, хотя и нуждается в корректировке используемых представлений геометрической оптики, что связано с различием в понятии луча (как направления распространения света) и направления распространения волнового фронта (то есть направления нормали к нему)
Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия, однако, это явление также не относится к дифракции.
Первая волновая теория дифракции с привлечением интерференции к объяснению дифракционных картин дана Томасом Юнгом. Юнг предположил, что существует передача амплитуды колебаний, поперечная к направлению распространения волны, то есть не только перпендикулярно волновому фронту, но и вдоль него. Скорость этой передачи (поток амплитуды) пропорционален длине волны и различию (градиенту) амплитуд на фронте. По Юнгу дифрагированная волна возникает локально в некоторой окрестности границы геометрической тени за краем препятствия. Совершенно симметрично дифрагированная волна образуется и в «освещённой» области пространства, то есть край препятствия является источником цилиндрических волн. Интерференция прошедших и дифрагированных волн создаёт создаёт полосы на краю тени[2].
Слабым местом теории Юнга, которое показал Френель, оказалась неспособность объяснить тот факт, что острый и закруглённый края препятствия создают совершенно одинаковые дифракционные картины. Френель отказался от локальной трактовки дифрагировавших волн и воспользовался принципом Гюйгенса, с помощью которого описал дифракционные картины как результат интерференции бесконечного множества фиктивных точечных вторичных источников, распространённых по всей плоскости отверстия[12].
В строгой формулировке Гельмгольца и Кирхгофа математическая задача дифракции волн с помощью принципа Гюйгенса формулируется в виде интегрального уравнения, решить которое в общем случае, как правило, не удаётся. Рассчитать дифракционное поле на основе принципа Гюйгенса получается, как правило, только если указаны краевые условия[12].
Приближённое решение задачи получается при отверстии, большом по сравнению с длиной волны, по Кирхгофу пользуются следующими упрощениями[12]:
в плоскости отверстия значения волнового поля и его производных принимают такими, как если бы экран падающую волну не искажал;
непосредственно за экраном значения поля и его производных равны нулю.
Таким образом может быть получено приближённое решение дифракционного поля как для конечных расстояний от отверстия (случай расходящихся пучков, то есть сферических волн — дифракция Френеля), так и для удалённой зоны (случай приближённо параллельных пучков, то есть плоских волн — дифракция Фраунгофера)[12].

Download 65.38 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling