Литература Дифра́кция во́лн в старой литературе также диффракция [1], от лат diffractus; букв. «разломанный»


Download 65.38 Kb.
bet4/5
Sana17.06.2023
Hajmi65.38 Kb.
#1533560
TuriЛитература
1   2   3   4   5
Bog'liq
DIFAKSION RUS

Дифракция на щели
Распределение интенсивности света при дифракции на щели
См. также: дифракция на N щелях и дифракционная решётка
Рассмотрим монохроматическую плоскую волну с амплитудой Ψ′ с длиной волны � , падающую на экран с щелью ширины � .
Будем считать, что щель находится в плоскости x′ − y′ с центром в начале координат. Тогда может предполагаться, что дифракция производит волну ψ, которая расходится радиально. Вдали от разреза можно записать
Используя биномиальное разложение и пренебрегая слагаемыми второго и выше порядков малости, можно записать расстояние в виде:
Видно, что 1/r перед уравнением не осциллирует, то есть даёт малый вклад в интенсивность по сравнению с экспоненциальным множителем. Тогда его можно записать приближённо как z.

Построение зон Френеля на волновом фронте
Дифракция Френеля наблюдается в расходящихся пучках (точечный источник) на круглом отверстии в непрозрачном экране или на круглом непрозрачном препятствии[13]. Теория Френеля даёт правильное значение амплитуды результирующей волны (т. е. освещённости дифракционной картины в данной точке), пока размеры отверстий и препятствий велики по сравнению с длиной волны, т. е. углы дифракции малы[14].
Рассмотрим случай дифракции света от точечного источника S, который проходит сквозь круглое отверстие DD и падает на экран, где наблюдается дифракционная картина в точке О, в которой ось симметрии системы пересекает экран. Сферический волновой фронт разрежем коническими поверхностями OKL, OMN, OPQ и т. д. так, чтобы длины образующих этих конусов OK, OM, OP отличались друг от друга на половину длины волны. Таким образом волновой фронт разрезается на зоны Френеля. Свет, приходящий в точку O из любых двух соседних зон при интерференции даёт минимум. Поскольку количество света пропорционально площади зоны, а зоны эти имеют приблизительно одинаковую площадь (так как разность хода в половину длины волна мала по сравнению с размерами отверстия и расстояниями в оптической системе), этот минимум соответствует почти полному гашению света[13]. Таким образом, в монохроматическом свете[15]:
если отверстие открывает чётное число зон Френеля (2, 4, 6...), в точке O будет наблюдаться тёмное пятно, окружённое светлыми кольцами;
если отверстие открывает нечётное число зон Френеля (1, 3, 5...), в точке O будет наблюдаться светлое пятно, окружённое тёмными кольцами.
В белом свете, поскольку деление на зоны зависит от длины волны � , кольца получаются цветными[15].
Для определения картины дифракции в точке, находящейся в стороне от оси симметрии оптической системы, дифракционную картину поворачивают относительно источника света, пока ось симметрии не пройдёт через интересующую точку. При этом зоны Френеля поворачиваются относительно отверстия или препятствия, и новое число открытых (или закрытых) зон даёт в выбранной точке минимум или максимум[16].
Прозрачный экран, в котором все чётные или все нечётные зоны зачернены (может быть изготовлен, например, фотографированием чертежа или колец Ньютона на пластинку или плёнку с большим уменьшением) называется зональной пластинкой[18].
Расположив источник и экран на тех расстояниях, на которые зональная пластинка рассчитана, с помощью пластинки, на которой открыты все чётные (0-я, 2-я, 4-я и т. д.) зоны, можно получить интуитивно неочевидный, но теоретически предсказуемый результат: так как пластинка исключает гасящую интерференцию, с её помощью можно получить в точке в центре экрана освещённость почти вдвое больше, чем без пластинки. Такая зонная пластинка действует как собирательная линза[19].
Зонная пластинка, в которой свет чётных зон не поглощается, а лишь получает дополнительную разность хода в половину длины волны, создаёт ещё вдвое больше света по сравнению с поглощающей пластинкой (вчетверо больше, чем от такого же размера отверстия). Роберт Вуд изготовил такую пластинку, снимая слой лака, нанесённый на стекло, пока оптическая разность хода не достигла половины длины волны[19].
Дифракция от диска

Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
Картина дифракции на непрозрачном диске описывается тем же методом, который приводит, однако, к иным результатам. Непрозрачный диск закрывает зоны Френеля от m-й до бесконечности, и уже неважно, чётно ли m или нечётно[16]. В центре тени от диска всегда остаётся светлое пятно Пуассона[20].
Таким образом, наиболее заметные различия дифракционных картин от отверстия и от диска следующие[20]:
за отверстиями наблюдается небольшое число колец, при изменении диаметра отверстия в центре дифракционной картины наблюдается чередование максимумов и минимумов, то есть светлых и тёмных пятен;
за дисками наблюдается большое число дифракционных колец, которое возрастает при уменьшении расстояний �,� , но в центре при этом всегда есть светлое пятно Пуассона.

Download 65.38 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling