Логические (булевы) функции основные логические функции


Download 0.87 Mb.
bet23/30
Sana24.03.2023
Hajmi0.87 Mb.
#1290651
1   ...   19   20   21   22   23   24   25   26   ...   30
Bog'liq
дм

Теорема. Если максимальная степень вершин в графе равна , то хроматическое число этого графа не превосходит  + 1. При этом хроматическое число графа равно  + 1 только в двух случаях: во-первых, если граф является полным и, во-вторых, если  = 2 и при этом данный граф содержит контур нечетной длины (такой граф изображен на рис. 10, максимальная степень его вершин – 2, а хроматическое число – 3). Во всех остальных случаях хроматическое число графа не превосходит максимальной степени вершин.

Примечание. Оценка хроматического числа, даваемого этой теоремой, является достаточно грубой. Особенно наглядно это выглядит на примере дерева (разд. 14), для которого степень вершин может быть как угодно велика, а хроматическое число равно 2.
Рассматриваемые вопросы связаны с известной проблемой четырех красок. Для того чтобы ее сформулировать, нам понадобятся еще несколько определений.
Граф называется плоским, если он нарисован на плоскости, причем любые 2 ребра могут пересекаться только в вершине.
Графы называются изоморфными, если существует такая нумерация вершин в этих графах, что они имеют одну и ту же матрицу смежности (фактически изоморфные графы – это одинаковые графы, которые отличаются только другим изображением).
Граф называется планарным, если он изоморфен плоскому графу. Таким образом, планарный граф можно изобразить на плоскости как плоский. На рис. 11 изображены 2 изоморфных (одинаковых) графа, причем первый из них планарный, а второй является плоским.

Можно доказать (это не совсем простая теорема), что хроматическое число планарных графов меньше или равно 5. Однако Августом де Морганом (1850) была выдвинута гипотеза о том, что хроматическое число планарных графов меньше или равно 4. Этой проблеме было посвящено огромное число математических работ. В конце концов, удалось свести эту проблему к исследованию верности этой гипотезы для достаточно большого числа типов графов ( 30 тыс.), что и было сделано с помощью компьютеров (1976). Гипотеза о четырех красках оказалась справедливой, а сама проблема перешла в задачу об упрощении доказательства гипотезы о четырех красках.
Отметим самую известную интерпретацию проблемы о четырех красках. Пусть имеется географическая карта. Можно ли, используя только 4 краски, изобразить эту карту так, чтобы соседние страны (имеющие общую границу) были окрашены в разный цвет? Понятно, что в соответствующем графе вершинами являются страны, а смежными вершинами являются соседние страны. Ясно, что полученный граф является планарным, и после 1976 г. ответ на этот вопрос является положительным.
Заметим, что в теории графов ставится часто вопрос о реберной раскраске графов. Какое минимальное число цветов (это число иногда называют реберно-хроматическим) нужно, чтобы раскрасить ребра графа так, что любые 2 смежных ребра (т. е. 2 ребра, имеющих общую вершину) были бы окрашены в разный цвет? Для реберно-хроматического числа графа справедлива гораздо более точная оценка, чем для просто хроматического числа, а именно, верна следующая, в какой-то степени удивительная, теорема.

Download 0.87 Mb.

Do'stlaringiz bilan baham:
1   ...   19   20   21   22   23   24   25   26   ...   30




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling