M athem atical analysis I
Natural-Mathematical Science
Download 188.39 Kb. Pdf ko'rish
|
Mathematical Analysis I Syllabus
Natural-Mathematical Science
MATHEMATICAL ANALYSIS I 3-Semester Syllabus_________ Part 3: Topic Outline/Schedule A LTER N A TE FORMAT: W e ek T op ic details Total hours Lecture hours Practic e hours 1 Presentation o f the course. N atural num bers and fractions. Binom ial coefficients. Integers. The Euclid algorithm o f the division. Prim e numbers. Greater com m on divisor. The principle o f induction. Rational numbers. Decim al expansion o f a rational num ber, Sqrt[2] is not a rational num ber. P ro o f by contradiction. Periodic decim al expansion im plies that the num ber is rational. Real numbers. A xiom s and the com pleteness axiom. Sup, Inf, M in and Max. Triangle inequalities. Exercise on triangle inequalities. L ast properties o f the real num bers. Com plex num bers: basic properties, trigonom etric form o f a com plex numbers, the norm and the argument. O ther exam ples o f fields (Zp). Polynom ial equations (quick remark). 10 6 4 2 E xponential form o f com plex num bers. N -th roots o f a com plex num ber, n-th root o f the unity. Functions: definition and exam ples (sequences) M ore on the concept o f a function. Range. Injectivity, surjectivity, bijections, pre-im ages, range,' sup, max, inf, min. Com position o f functions. M onotonicity o f the com posite functions. Sum, product and division o f function. Polynom ials and rational functions. The inverse o f a function. M onotonicity o f the inverse functions. Inverse trigonom etric functions. The n-th root functions. 10 6 4 3 Sequences I(the lim it o f a sequence, uniqueness o f the lim it, sequences diverging to infinity, com parison theorems). 10 6 4 Page 6 |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling