Ko'p o'zgaruvchan regressiya tahlili uchun bosqichlarni tanlash - bu xususiyatlarni tanlash va ularni normallashtirish, yo'qotish funktsiyasi va uni minimallashtirishdan iborat.
* Xususiyatni tanlash
Xususiyatlarni tanlash ko'p o'zgaruvchan regressiyaning muhim bosqichidir. Xususiyat tanlovi, shuningdek, o'zgaruvchan tanlov sifatida ham tanilgan. Yaxshi model yaratish uchun muhim o'zgaruvchilarni tanlash biz uchun muhim ahamiyat kasb etadi.
Normalizatsiya xususiyatlari Biz funktsiya ma’lumotlarini ko’paytirishimiz kerak, chunki u ma'lumotlarning umumiy tarqalishini va nisbatlarini saqlaydi. Bu samarali tahlilga olib keladi. Har bir xususiyatning qiymati ham o'zgarishi mumkin.
Ma'lumotlar to'plamida yo'qotishlarni minimallashtirish bu Gradient tushishi algoritmi asosida olib boriladi. Misol uchun quyidagicha berilgan bo’lsa,
Y =2+3x biz uni xosila olish orqali
Y =4x+3 ko’rinishida yechamiz.
Ko'p o'zgaruvchan regressiyaning eng muhim ustunligi bu ma'lumotlar to'plamida mavjud bo'lgan qo'shimcha va mustaqil o'zgaruvchilar o'rtasidagi o'zaro bog'liqlikni tushunishga yordam beradi. Ko'p o'zgaruvchan chiziqli regressiya - bu keng qo'llaniladigan mashinalarni o'rganish algoritmi.
Ko'p o'zgaruvchan regressiyaning kamchiliklari
Ko'p o'zgaruvchan texnikalar biroz murakkab va yuqori darajadagi matematik hisoblashni talab qiladi.
Ko'p o'zgaruvchan regressiya modelining natijasini ba'zan izohlash oson emas, chunki u bir xil bo'lmagan yo'qotish va xatolik ehtimolligiga ega.
Ushbu modelni kichik ma'lumotlar to'plamlariga nisbatan qo'llash mumkin emas. Natijalar kattaroq ma'lumotlar to'plamlari uchun yaxshiroq natija beradi.
Do'stlaringiz bilan baham: |