Mashinali o‘qitishga kirish Nosirov Xabibullo xikmatullo o‘gli Falsafa doktori (PhD), tret kafedrasi mudiri


Download 1.6 Mb.
bet10/10
Sana15.06.2023
Hajmi1.6 Mb.
#1478310
1   2   3   4   5   6   7   8   9   10
Bog'liq
Mashinali o\'qitishga kirish 20-ma\'ruza Nosirov Kh

hidx = cluster(clustTreeCos,'criterion','distance','cutoff',.006); for i = 1:5 clust = find(hidx==i); plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i}); hold on end hold off xlabel('Sepal Length'); ylabel('Sepal Width'); zlabel('Petal Length'); view(-137,10); grid on


This plot shows that the results from hierarchical clustering with cosine distance are qualitatively similar to results from K-Means, using three clusters. However, creating a hierarchical cluster tree allows you to visualize, all at once, what would require considerable experimentation with different values for K in K-Means clustering.

Clustering Fisher's Iris Data Using Hierarchical Clustering

Hierarchical clustering also allows you to experiment with different linkages. For example, clustering the iris data with single linkage, which tends to link together objects over larger distances than average distance does, gives a very different interpretation of the structure in the data.

clustTreeSng = linkage(eucD,'single'); [h,nodes] = dendrogram(clustTreeSng,0); h_gca = gca; h_gca.TickDir = 'out'; h_gca.TickLength = [.002 0]; h_gca.XTickLabel = [];

Thank you! Contacts Khabibullo Nosirov, Phd Project Manager, Head Of The Department Tashkent University Of Information Technologies named after Muhammad Al-Khwarizmi Radio And Mobile Communications Faculty 100084, Amir Temur 108, Tashkent, Uzbekistan n.khabibullo1990@gmail.com +998 99 811 57 62 (WhatsApp) +998 90 911 57 62 (Telegram) www.tuit.uz www.spacecom.uz www.intras.uz


Download 1.6 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling