Matematika fanidan o‘qituvchilar uchun 100 ta test


Download 1.44 Mb.
bet1/3
Sana28.12.2022
Hajmi1.44 Mb.
#1070536
  1   2   3
Bog'liq
100 test(matematika) Akademik litsey


Matematika fanidan o‘qituvchilar uchun 100 ta test

  1. sonining oxirgi ta raqamini toping.

A) 32 B) 72 C) 92 D) 12

  1. T omoni 4 ga teng kvadratga tashqi chizilgan aylanadagi va yoylar o‘rtalari, mos ravishda, va bo‘lsin. Agar va kesmalar va ni mos ravishda va da kessa

A)
B)
C) 
D) 

  1. ko‘phadni ga bo‘lganda qanday qoldiq qoladi?

A) B) C)  D) 

  1. Tomoni ga teng bo‘lgan kvadrat berilgan. va tomonlarda va nuqtalar, mos ravishda, shunday olinganki, bunda , . uchburchakka ichki chizilgan aylana radiusini toping.

A) B) C) D)

  1. Tо‘g‘ri burchakli uchburchakning uchi tо‘g‘ri burchak bо‘lib kateti va nuqtalar orqali teng uch bо‘lakka bо‘lingan. Agar bо‘lsa, va burchaklarning yig‘indisini toping.

A) 600 B) 450 C) 300 D) 900

  1. sonini ga bo‘lgandagi qoldiqni toping.

A) B) C) D)

  1.  va  sonlar orasidagi munosabatni aniqlang.

A)  B) C) D) 

  1. uchburchakda balandlik va medianalar. Agar va bo‘lsa, burchakni hisoblang.

A) B) C) D)

  1. Ushbu tenglamani qanoatlantiruvchi butun sonlar uchliklari nechta.

A) B) C) D)

  1. ning qanday qiymatida ko‘phad ga qoldiqsiz bo‘linadi.

A) B) C) D)

  1. Burchaklaridan hech biri o‘tmas bo‘lmagan uchburchakka tashqi chizilgan aylana radiusi ga teng bo‘lsa, u holda shu uchburchak medianalari yig‘indisining eng kichik qiymatini toping.

A) B) C) D)

  1. Yig‘indini hisoblang:

A) B) C) D)

  1. Agar bo‘lsa, ning oxirgi raqamini toping.

A) B) C) D)

  1. -uchburchakda va bo‘lsa, ni toping.

A) B) C) D)

  1. Ushbu  ifodaning eng kichik qiymatini toping.

A) B) C) D)

  1. Aylanaga to‘rtburchak ichki chizilgan. Agar , bo‘lsa, uning diagonallari ko‘paytmasini toping.

A) B) C) D) 

  1. nimaga teng?

A) B) C) D)

  1. Agar  va bo‘lsa,

A) B) C) D) 

  1. Tenglama butun sonlarda nechta yechimga ega?

A) ta B) ta C) ta D) ta

  1. Hisoblang:

A) B) C) D)

  1. Agar arifmetil progressiyaning birinchi ta hadining yig‘indisi bo‘lsa,

ni hisoblang.
A) B) C) D)

  1. Berilgan kvadrat teng ta kvadratchalarga bo‘lindi. Hosil bo‘lgan shaklda nechta kvadrat hosil bo‘ladi?

A) B) C) D)

  1. Agar bo‘lsa, tenglamani yeching.

A) ildizi yo‘q B) C) D)

  1. Hisoblang:

A) B) C) D)

  1. uchlik ning ildizlari bo‘lsa,

ni toping.
A) B) C) D)

  1. o‘sib borish tartibida joylashtiring.

A) B) C) D)

  1. tenglamaning nechta haqiqiy ildizi bor?

A) B) C) D)

  1. Hisoblang: (bunda ning butun qismi).

A) B) C) 9 D)

  1. Hisoblang

A) B) C) D)

  1. Taqqoslang: va .

A) B) C) D) aniqlab bo‘lmaydi

  1. bo‘lsa ni toping.

A) 49 B)50 C)51 D)52

  1. Hisoblang.

A) B) C) D)

  1. Soddalashtiring.

A) B) C) D)

  1. tenglamaning ildizlari sonini toping.

A) 0 B) 1 C) 2 D) 3

  1. ushbu kvadratning tomoni 1 ga teng bo‘lsa, bo‘yalgan soha yuzini toping.

A) B)
C) D)

  1. tenglamada lar natural sonlar bo‘lsa, qanday son bo‘ladi?

A) 12345 B) 45321 C) 21345 D) 21435

  1. funksiya va unga nuqtada o‘tkazilgan urinmaning nechta umumiy nuqtasi bor?

A) 1 B) 2 C) 3 D) 4

  1. tenglamada a ning qaysi qiymatlarida shu tenglama hech bo‘lmaganda bitta yechimga ega bo‘ladi?

A) B) C) D)

  1. x, y, z musbat butun sonlar, xy = 24 va yz = 36 bo‘lsa, x+y+z yig‘indining eng kichik miqdorini toping.

A) 14 B) 17 C) 2 D) 23

  1. y = 6 + 5x – x parabolaning OX o‘qiga nisbatan simmetrigini toping.

A) y = 5x – x – 6
B) y = x – 5x – 6
C) y = x + 5x – 6
D) y = 6 – 5x – x

  1. Agar tenglik o‘rinli bo‘lsa, quyidagilardan qaysi biriga teng?

A) B) C) D)

  1. Kasrni qisqartiring:

A) B) C) D)

  1. bo‘lsa,

A) B) C) 3a D)

  1. Yig‘indini hisoblang. 17+20+23+26+…+9n+8

A) B) (2n-6)(9n+25) C) D) 3(n-1)(9n+25)

  1. P(x)=(x2-5x-3)Q(x-1)+3x-4 ko‘phad berilgan. P(x) - ko‘phadning koeffitsiyentlari yig‘indisi 13 ga teng bo‘lsa, Q(x) – ko‘phadning ozod hadini toping.

A) 2 B) -1 C) -2 D) 1

  1. tenglama nechta musbat butun yechimga ega?

A) 4 B) cheksiz ko‘p C) Ø D) 1

  1. Agar bo‘lsa, ifodaning qiymatini toping.

A) 0 B) 1 C) 2 D) 3

  1. + b + c < 0 va  ax2 + bx c = 0 tenglama haqiqiy yechimga ega emasligi ma’lum. Koeffitsiyent c ning ishorasini aniqlang.

A) c>0 B) c<0 C) c=0 D) aniqlab bo‘lmaydi.

  1. Teng yonli   uchburchakda   burchak   ga teng. Uchburchakning ichida shunday   nuqta

olinganki, bunda  .   ni hisoblang.
A)   B)     D)  

  1. Agar teng yonli trapetsiyaning balandligi h, yon tomoni esa unga tashqi chizilgan aylana markazidan burchak ostida ko‘rinsa, trapetsiyaning yuzini toping.

A) B) C) D)

  1. Quyidagi chizmada BAC=300, CAD=500, ADB=600 va BDC=200 ekani ma’lum. ACB=?

A) 400 B) 600 C) 700 D) 800


  1. Download 1.44 Mb.

    Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling