Mathcad va matlab muhitida ishlash


Download 208.42 Kb.
bet10/14
Sana19.06.2023
Hajmi208.42 Kb.
#1608887
1   ...   6   7   8   9   10   11   12   13   14
Bog'liq
MatLAB Matn

inv(M) – M matritsaga teskari matritsani qaytaradi.
Misol:
>> M=[2 1 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6]
M =
2 1 -5 1
1 -3 0 -6
0 2 -1 2
1 4 -7 6
>> P=inv(M)
P =
1.3333 -0.6667 0.3333 -1.0000
-0.0741 0.2593 1.1481 -0.1111
0.3704 -0.2963 0.2593 -0.4444
0.2593 -0.4074 -0.5185 -0.1111
>> M*P % M*P=E ekanligini tekshirish
ans =
1.0000 -0.0000 -0.0000 0.0000
0 1.0000 0.0000 0.0000
0.0000 -0.0000 1.0000 -0.0000
0.0000 -0.0000 -0.0000 1.0000


magic(n) – funksiyasi nn o’lchamli sirli matritsani beradi, yani barcha ustun elementlari yig’indisi, barcha satr elementlari yig’indisi va hatto diagonal bo’yicha elementlar yig’indisi bir xil songa teng bo’ladi. Masalan:
>> M=magic(4)
M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> sum(M')
ans =
34 34 34 34
>> M=magic(10)
M =
92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
4 81 88 20 22 54 56 63 70 47
85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34
17 24 76 83 90 42 49 26 33 65
23 5 82 89 91 48 30 32 39 66
79 6 13 95 97 29 31 38 45 72
10 12 94 96 78 35 37 44 46 53
11 18 100 77 84 36 43 50 27 59
>> sum(M')
ans =
505 505 505 505 505 505 505 505 505 505
>> M=magic(3)
M =
8 1 6
3 5 7
4 9 2
>> sum(M')
ans =
15 15 15
linsolve(A, b) - A·x=b ko’rinishdagi chiziqli tenglamalar sistemasi yechimini, linsolve(A, b, options) formatida tenglama yechish metodini berish imkonini chaqiradi.
>> A=[2 -1 1;3 2 -5;1 3 -2];
>> b=[0;1;4];
>> x=linsolve(A,b) % chiziqli tenglamalar sistemasi yechish
x =
[ 13/28]
[ 47/28]
[ 3/4]
>> A*x %yechimni to’g’riligini tekshirish
ans =
[ 0]
[ 1]
[ 4]



Download 208.42 Kb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling