2. Arifmetik vektorlar ustida chiziqli amallar va ularning xossalari
n o`lchovli arifmetik vektorlar ustida chiziqli amallar quyidagicha bajariladi:
Berilgan x va y vektorlarni qo`shganda ularning mos koordinatalari qo`shiladi: x + y = (x1 + y1; x2 + y2; …; xn + yn).
Berilgan x vektorni k haqiqiy songa ko`paytirganda uning har bir koordinatasi k marta ortadi: kx = (kx1; kx2; …; kxn).
Vektorlar ustida chiziqli amallar quyidagi xossalarga bo`ysinadi:
1) x + y = y + x; 5) (α + β) x = α x + β x;
2) x + (y + z) = (x + y) + z; 6) α (β x) = (α β) x;
3) x + (- y) = x – y ; 7) x + θ = x;
4) α (x + y) = α x + α y; 8) x 1 = x ,
bu yerda, x, y va z – arifmetik vektorlar, α va β esa haqiqiy sonlar.
Arifmetik vektorlarning skalyar ko`paytmasi. Vektor uzunligi
Skalyar ko`paytma xossalari
Berilgan x = (x1; x2; …; xn) va y = (y1; y2; …; yn) arifmetik vektorlarning skalyar ko`paytmasi deb, vektorlar mos koordinatalari ko`paytmalarining yig`indisiga teng songa aytiladi va (x, y) shaklda yoziladi. Ta`rifga binoan,
(x, y) = x1y1 + x2y2 + …+ xnyn yoki
Berilgan x = (x1; x2; …; xn) vektorning moduli yoki uzunligi (normasi) deb, quyidagi formula bo`yicha aniqlanadigan nomanfiy |x| songa aytiladi:
yoki .
Vektorlarning skalyar ko`paytmasi quyidagi xossalarga bo`ysinadi:
1) (
Do'stlaringiz bilan baham: |