Mavzu: Kompleks sonning trigonometrik ko’rinishi


Trigonometrik shakldagi kompleks sondan ildiz chiqarish


Download 130.56 Kb.
bet4/7
Sana18.06.2023
Hajmi130.56 Kb.
#1559680
1   2   3   4   5   6   7
Bog'liq
Kompleks sonning trigonometrik ko’rinishi. Muavr formulasi

3.Trigonometrik shakldagi kompleks sondan ildiz chiqarish

Trigonometrik ko’rinishda berilgan ikki kompleks son ko’paytmasi shunday kompleks sonki, uning moduli ko’paytiruvchilar modullarining ko’paymasiga, argumenti esa ko’paytiruvchilar argumentlarining yig’indisiga teng, ya’ni


r1(Cosφ1 + iSinφ1) · r2(Cosφ2 + iSinφ2)=
= r2· r2(Cos(φ1+ φ2) + iSin(φ1+ φ2))
Misol: 2(Cos200 + iSin200) · 7(Cos1000 + iSin1000)=
= 14(Cos1200 + iSin1200)=

2 . Trigonometrik ko’rinishda berilgan ikki kompleks son bo’linmasining moduli bo’linuvchi va bo’luvchi modullarining bo’linmasiga teng bo’lib, bo’linmaning argumenti bo’linuvchi va bo’luvchi argumentlarining ayirmasiga teng, ya’ni

Misol:

kompleks sonning n-darajali ildizi quyidagicha bo’lsin:

U holda, quyidagi tenglik o’rinli bo’ladi:

Muavr formulasiga asosan:

Agar ikkita kompleks son o’zaro teng bo’lsa, ularning modullari teng, argumentlari esa bir-biridan 2 ga karrali burchakka farq qiladi. Shuning uchun hamda yoki va
va larning topilgan qiymatlarini (9) ga qo’yamiz:

5-misol. kompleks sondan ildiz chiqaring.
Yechilishi: Berilgan ildiz ostidagi 1 sonini trigonometrik ko’rinishga keltiramiz:
.
Ildiz chiqarish formulasi (11) dan foydalanamiz:

Bunda dan iborat.


Kompleks son uchun Eyler formulasi
Kompleks ko’rsatkichli funksiyani qaraylik. Bunda , e” esa

dan iborat.
U holda, ez ni quyidagicha yozish mumkin bo’ladi:
yoki (1)
(2)
Agar x=0 bo’lsa, (2) tenglik
(3)
ko’rinishga ega bo’ladi. (3) tenglikka Eyler formulasi deyiladi.
Kompleks ko’rsatkichli funksiyaning davri ga teng. Agar uning davri hisobga olinsa, ko’rsatkichli funksiyani
(4)
ko’rinishda ifodalash mumkin. (4) da z=0 bo’lsa,
(5)
munosabat o’rinli bo’ladi.
- trigonometrik ko’rinishdagi kompleks sonni ko’rsatkichli shaklda quyidagicha ifodalash mumkin:
. (6)
(6) ga kompleks sonning ko’rsatkichli ko’rinishi deyiladi.
Kompleks ko’rsatkichli funksiyalar uchun ko’paytirish, bo’lish, darajaga ko’tarish va ildiz chiqarish amallarini bajarish mumkin.
Faraz qilaylik, va bo’lsin. U holda,
, (7)
. (8)
bo’lsin. U holda, ni qo’yidagi ko’rinishda ifodalash mumkin:
, (9)
bundan, ,
Agar (3) dagi y ni va - lar bilan almashtirilsa, qo’yidagilar hosil bo’ladi:
(10)
(10) dagi tengliklarni qushib, ayiramiz hamda va larni topamiz:
(11)
(12)
(11) va (12) lar trigonometrik funksiyalarni ko’rsatkichli funksiyalar orqali ifodalaydi, hamda ular ham Eyler formulalari deb nomlanadi.
Misol.




Download 130.56 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling