Mavzu. Matritsa ustida almashtirishlar
Download 423.49 Kb. Pdf ko'rish
|
matritsa ustida almashtirishlar
3.1. Agar A matritsa nosingular va simmetrik bo‘lsa, 1 A matritsa ham nosingular va simmetrik bo‘lishini ko‘rsating,
) ( A I nosingular matritsa bo‘lsa, A A I A I A 1 1 ) ( ) ( tenglik bajarilishini ko‘rsating. 3.3.
b c a A matritsaning teskari matritsaga ega bo‘lishi shartini toping. 3. Mashqlar 3.4. 7 3 5 2
va 2 3 5 7
bo‘lsin. 1 A C ekanini ko‘rsating. 3.5. 4 0 3 24 1 18 5 0 4 B matritsa 4 0 3 6 1 0 5 0 4 A matritsaning teskari matritsasi bo‘lishini ko‘rsating.
2 6 10 11 21 17 5 3 11 36 1 B matritsa 5 1 3 1 2 4 2 1 3
matritsaning teskari matritsasi bo‘lishini ko‘rsating. 3.7. Berilgan matritsalardan qaysi birlari uchun teskari matritsa mavjud bo‘ladi? 1)
; 6 2 9 3 A 2) ; 2
5 0 B 3) ; 11
3 6 2 2 0 2 1 C
. 10
0 3 1 2 1 2 1 D
3.8. 1 1 1 0 A bo‘lsin. 1 2
A A va
I A 3 bo‘lishini ko‘rsating. 3.9. Berilgan matritsalardan qaysi birlari o‘zaro teskari matritsalar bo‘ladi? 1)
0 1 1 1 va ; 1 1 1 0 2) 2 1 5 3 va
; 3 1 5 2
3) 5 0 0 3 va
; 3 0 0 5 5 1 4)
1 3 1 3 2 0 0 2 1 va
. 2 1 2 3 1 3 6 2 7 3.10. 5 2 6 3
matritsa berilgan. 1 A matritsani toping. 3.11. . 4 1 2 5
matritsa berilgan. 1 A matritsani toping. 3.12. Berilgan shartlarni qanoatlantiruvchi A matritsani toping: 1) ;
0 1 1 ) 3 ( 1 A 2) ; 3
1 1 ) 2 ( 1 T A
3) ; 0 1 1 2 ) 2 ( 1 I A T 4)
8 3 4 3 0 1 2 1 0 1
.
3.13. 1 0 0 0 1 5 0 0 1 ABC bo‘lsin. 1 1 1 A B C ni toping. 3.14. 1 5 7 6 1 4 3 2 3
matritsa berilgan. A A C adj
ko‘paytmaning barcha nodiagonal elementlarini toping. 3.15. 0 3 1 4 2 0 3 2 1 A matritsa berilgan. A A C adj
ko‘paytmaning barcha diagonal elementlarini toping.
A matritsa berilgan. 1
3.16. . 4 2 2 1 2 1 1 1 1
3.17. . 8 10 3 4 6 2 3 2 1 A A matritsa berilgan. 1
3.18. . 1 2 1 1 1 2 1 1 1 0 1 2 2 1 0 1
3.19. . 0 2 1 0 2 1 1 2 0 1 0 1 1 0 1 1 A 3.20. A matritsa berilgan. Matritsaning LU yoyilmasini toping: 1) ;
8 1 2 A 2) ; 5
4 6 A
3) 14 9 9 4 0 9 2 1 3 A ; 4)
4 5 6 9 13 4 2 3 2 A ; 5) ; 17 16 6 4 3 13 3 6 2 5 0 2
6) . 10 6 8 12 9 6 14 5 6 7 8 4 4 3 2 A
matritsa berilgan. ) ( A r ni minorlar ajratish usuli bilan toping: 3.21. . 1 1 4 3 1 0 3 1 3 2 1 1 A 3.22. . 7 2 2 2 4 1 3 2 1
A matritsa berilgan. ) ( A r ni elementar almashtirishlar usuli bilan toping: 3.23. . 11 6 1 3 6 4 1 2 1 2 3 1
3.24. . 9 0 3 1 1 3 4 1 2 3 1 2 4 3 1 1 A
Adabiyotlar 1. Yo.U.Soatov. Oliy matematika 1-tom., T, “O’qituvchi” 1992 2. Yo.U.Soatov. Oliy matematika 2-tom., T, “O’qituvchi” 1992 3. Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162- 169.
4. Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp. 96-99.
5. Sh.R.Xurramov ”Matematika” Toshkent- 2016. Download 423.49 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling