an1
|
2na
2
|
ann
|
|
|
a"1
|
a"2 •
|
ann-1
|
Agar A matritsaning determinant 0 bo‘lsa u maxsus matritsa, aks holda maxsusmas matritsa deb ataladi.
=
1 2 3 4
О
1-4 - 2 • 3 = -
2m
2 6 - 2 1 5 4 3 -10
isol. 3-tartibli determinantni hisoblang
:
О Uchburchaklar usuli
= [2 • 5-0 + 6 • 4 • 3 + 1- (-1) • (-2)]-[(-2) • 5 • 3 + 6-1-0 + 4 • (-1) • (2)] = 112.
= (-1)1+1 • 2• 5 4 +(-1)'+2 • 6• 1 4 +(-1)1+3 • (-2)• 1 5 = 2-(5• 0-(-1)-4)-
О Diogcmallar usuli
- 6 -(1- 0 - 4 • 3)-2 -(1-(-1)-5 • 3) = 2 • 4 - 6-(-12)-2-(-16) = 8 + 72 + 32 = 112 3-misol. Determinantlarning xossalaridan foydalanib quyidagini isbotlang:
a
|
К
|
c + ax+Ку
|
|
a
|
o4
|
a2
|
b2
|
c2 + a2x + b2y
|
=
|
a2
|
b2 C2
|
a3
|
К
|
С + a3x + by
|
|
a3
|
О
CO
|
|
al
|
К
|
c++Ку
|
|
a
|
К
|
C1
|
|
a
|
b1
|
ajX
|
|
a
|
b1
|
b1 У
|
О
|
a2
|
b2
|
c2 + a2x + ^y
|
=
|
a2
|
b2
|
C2
|
+
|
a2
|
b2
|
a2x
|
+
|
a2
|
b2
|
b2 У
|
|
a3
|
bs
|
С + a3x + by
|
|
a3
|
b3
|
C3
|
|
a3
|
b3
|
a3x
|
|
a3
|
b3
|
b3 У
|
= [2-5-0 + 6- 4- 3 + l- (—1) • (—2)]—[(—2) - 5- 3 + 6-1-0 + 4- (—1) • (2)] = 112.
О Birinchi и stun elementlari bo 'yichayoyib hisoblash usuli
6 5
3 -1
5 4 -1 0
4
1 0
1 4 3 0
Yuqoridagi ifodadan ko’rinadiki 2-determinantning 1-ustuni 3-ustuniga; 3-determinantda 2-ustun 3-ustunga proporsional shuning uchun ularning qiymati 0 ga teng bo’ladi. Shu bilan talab qilingan tenglik isbotlandi. •
misol. 4-tartibli determinantni satr yoki ustun bo’yicha yoshish yordamida hisoblang.
- 2 - 3 0 2
-
A =
12 2 3 -15 - 2 0 - 2 4 1
О 0 raqami qatnashgan satr yoki ustun bo’yicha yoyish berigan determinantni hisoblash qulaydir. Shuning uchun biz 1-satr bo’yicha yoyamiz:
|
-1
|
2
|
2
|
|
1
|
2
|
2
|
|
1
|
-1
|
2
|
|
1
|
-1
|
2
|
II
<
|
-1
|
5
|
-2
|
-(- 3)-
|
3
|
5
|
-2
|
+ 0 •
|
3
|
-1
|
-2
|
- 2 •
|
3
|
-1
|
5
|
|
2
-
|
4
|
1
|
|
0
|
4
|
1
|
|
0
|
-2
|
1
|
|
0
|
-2
|
4
|
= -2 • 9 + 3 • 31 + 0 - 2 • 6 = 63
Mustaqil bajarish uchun misollar
Ikkinchi tartibli determinantlarni hisoblang va tenglamani yeching.
|
cos a sin a
|
|
2x -1
|
x +1
|
1.
|
|
. 2.
|
x + 2
|
x -1
|
|
- sin a cos a
|
|
tartibli determinantni hisoblang
1 2 3 4 5 6 7 8 9
0 1 0 2 3 4 0 5 0
4.
3.
Biror satri yoki ustuni bo’yicha yo’yish orqali 3-tartibli determinantni hisoblang
0 a 0 b c d 0 e 0
1 2 3 001 4 5 6
5.
6.
Determinantlarning xossalaridan foydalanib hisoblang
• 2 2 л
sm a cos a 1
7. sin2 p cos2 P 1.
22 sin у cos у 1
Determinantni satryoki ustun bo’yichayoshish yordamida hisoblang:
Do'stlaringiz bilan baham: |