Механика твердого тела


Download 226 Kb.
bet1/5
Sana18.06.2023
Hajmi226 Kb.
#1562575
  1   2   3   4   5
Bog'liq
Свободные оси. Гироскопический эффект


Тема: Свободные оси. Гироскопический эффект.
План:

1. Свободные оси.


2. Гироскопический эффект
3. Кинетическая энергия вращения
4. Момент силы. Уравнение динамики вращательного движения твердого тела

При изучении вращения твердого тела пользуются понятием момента инерции. Моментом инерции системы (тела) отно­сительно оси вращения называется физи­ческая величина, равная сумме произведе­ний масс n материальных точек системы на квадраты их расстояний до рассматри­ваемой оси:



В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с коорди­натами х, у, z.
В качестве примера найдем момент инерции однородного сплошного цилиндра высотой Л и радиусом R относительно его геометрической оси (рис.23). Разобьем

цилиндр на отдельные полые концентриче­ские цилиндры бесконечно малой толщины dr с внутренним радиусом r и внешним — r+dr. Момент инерции каждого полого цилиндра dJ = r2dm (так как dr<то считаем, что расстояние всех точек ци­линдра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2rhdr. Если  — плотность материала, то dm=•2rhdr и dJ = 2r3dr. Тогда мо­мент инерции сплошного цилиндра



но так как R'2h объем цилиндра, то его масса m = R2h, а момент инерции
J = 1/2R2.
Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относи­тельно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, про­ходящей через центр масс С тела, сло­женному с произведением массы m тела на квадрат расстояния а между осями: J = Jc + ma2.

В заключение приведем значения мо­ментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).
Кинетическая энергия вращения
Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвиж­ной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными мас­сами m1, m2, ..., mn, находящиеся на рас­стоянии r1, r2, ..., rn от оси вращения. При вращении твердого тела относительно не­подвижной оси отдельные его элементар­ные объемы массами mi, опишут окружно­сти различных радиусов ri и имеют раз­личные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое те­ло, то угловая скорость вращения этих объемов одинакова:
= v1/r1 = v2/r2 = ... = vn/rn. (17.1)
Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:


33
или

Используя выражение (17.1), получим

где Jz — момент инерции тела относитель­но оси 2. Таким образом, кинетическая энергия вращающегося тела
Tвр = Jz2/2. (17.2)
Из сравнения формулы (17.2) с вы­ражением (12.1) для кинетической энер­гии тела, движущегося поступательно (T= mv2/2), следует, что момент инерции вращательного движения — мера инер­тности тела. Формула (17.2) справедлива для тела, вращающегося вокруг непод­вижной оси.
В случае плоского движения тела, на­пример цилиндра, скатывающегося с на­клонной плоскости без скольжения, энер­гия движения складывается из энергии поступательного движения и энергии вра­щения:

где m — масса катящегося тела; vcско­рость центра масс тела; J смомент инерции тела относительно оси, проходя­щей через его центр масс;  — угловая скорость тела.



Download 226 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling