Рубинштейн Л.И. Проблема Стефана. – Рига: Звайгзе, 1967.- 458 с.
Рубинштейн Л.И. Об единственности решения одной двухслойной задачи стефанского типа// Докл. АН СССР, 1965. Т. 160, № 5. - C. 1019-1022.
Канторович Л.В. О методе Ньютона/Труды Математического Института В.А.Стеклова.-
М., 1949. Том 28.- С. 104-144.
Referencens
Rubinstein L. I. The Stefan problem. - Riga: Zvaygze, 1967.- 458 s (in Russian).
Rubinstein L. I. On the uniqueness of the solution of one two-layer Stefan type problem// Dokl. AN SSSR, 1965. Т. 160, № 5. - S. 1019-1022 (in Russian).
Kantorovich L.V. About the Newton’s method/ Proceedings of the Mathematical Institute of V.A.Steklov.- Moscow, 1949, Т. 28.- S. 104-144 (in Russian).
Авторы:
Жамуратов К.- доцент кафедры Общей математики Гулистанского госуниверситета. E-mail:jonmuratov@mail.ru
Ахмидов Х . - магистр кафедры Общей математики Гулистанского госуниверситета.
УДК 519.63
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗАДАЧИ О ТЕРМОУПРУГОМ ПАРАЛЛЕЛЕПИПЕДЕ
ТЕРМОЭЛАСТИК ПАРАЛЛЕЛЕПИПЕД ҲАҚИДАГИ МАСАЛАНИ СОНЛИ МОДЕЛЛАШТИРИШ
Abstract. This article has developed a numerical model of a thermoelastic process in the form of a static uncoupled boundary value problem. Investigation of the equilibrium of solids subjected to thermomechanical loads is one of the urgent problems of modern science. Finite-difference relations for equilibrium equations and boundary conditions are proposed. An iterative process is constructed for obtaining numerical results, in which boundary conditions are taken into account at each iteration. As an example, a spatial unrelated static problem for isotropic bodies with boundary conditions in stresses is numerically solved. The considered isotropic body with a surface free of loads is subjected to a temperature field. A software tool has been developed for the numerical solution and visualization of the results of spatial static unconnected problems of thermoelasticity.
Do'stlaringiz bilan baham: |