Метод дифференциальных уравнений


Запишем уравнения элементов системы


Download 32.6 Kb.
bet4/6
Sana18.02.2023
Hajmi32.6 Kb.
#1212298
1   2   3   4   5   6
Запишем уравнения элементов системы. Для двигателя постоянного тока с независимым возбуждением
(17)
Так как поток возбуждения = const, то . Допустим, момент нагрузки мал, при этом =0.
Передаточную функцию для якорной цепи K1(p) можно получить из ее дифференциального уравнения
(18)
Пусть
Для редуктора и угла поворота вала двигателя
(19)
Для тахогенератора
. (20)
На основании функциональной схемы и полученных передаточных функций элементов системы составляем структурную схему рис. 13
Для построения фазового портрета необходимо записать систему дифференциальных уравнений.
Рассмотрим свободное движение системы ( ) при этом x = .
Дифференциальное уравнение нелинейной системы имеет вид
(21)
Представим уравнение в виде системы уравнений:
(22)
Построим фазовый портрет. Для простоты построения фазового портрета делаем некоторые упрощения:
1) Пусть обратная связь по скорости - отсутствует (К = 0).
2) Характеристика нелинейного элемента однозначна (рис. 14).
При этом:
(23)
С учетом принятых допущений система уравнений упрощается.
(24)
Построим характеристику для каждой зоны.
Пусть - a x a, (x) = 0.
При этом исходная система имеет вид:
(25)
Решение этого уравнения имеет вид , т.е. наклон фазовых траекторий всюду постоянный (отрицательный).
Определим равновесное состояние системы из условия:
(26)
Это условие выполняется при y = 0, т.е. точка вырождается в прямую линию y = 0 на интервале [- а, а]. Фазовые траектории на участке - а< x < a представляют собой прямые с коэффициентом наклона -1/Т1 при различных значениях начальных условий.
На прямых линиях проставляем стрелки таким образом, чтобы конечное движение стремилось к началу координат.
Пусть х > a, . При этом исходная система нелинейных уравнений имеет вид
(27)
где c- семейство изоклин, которое представляет собой прямые параллельные оси х, т.е. , где определяется из выражения для
. (28)
Таким образом
. (29)
Задаваясь значениями , строим семейство изоклин. Определяем углы пересечения изоклин фазовыми траекториями.
Так как . Например, если , то = 90.
Пусть х < - a, . Построение выполняем аналогично, так как знак изменился, то будут другие углы пересечений изоклин фазовой траекторией. Фазовый портрет системы приведен на рис. 15.
Рис. 14 Рис. 15

Download 32.6 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling