Mitochondrial endocrinology Mitochondria as key to hormones and metabolism


Download 2.44 Mb.
Pdf ko'rish
bet5/23
Sana01.10.2017
Hajmi2.44 Mb.
#16915
1   2   3   4   5   6   7   8   9   ...   23

in families with diabetes mellitus. Lancet 342, 1429–1430

.

Wai, T., Teoli, D., Shoubridge, E.A., 2008. The mitochondrial DNA genetic bottleneck



results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484–

1488


.

Walker, M., Taylor, R.W., Stewart, M., Bindoff, L.A., Shearing, P., Anyaoka, V., et al.,

1995a. Insulin and proinsulin secretion in subjects with abnormal glucose

tolerance and a mitochondrial tRNA

Leu(UUR)

mutation. Diabet. Care 18, 1507–

1509

.

Walker, M., Taylor, R.W., Stewart, M., Bindoff, L., Jackson, M., Alberti, K.G., et al.,



1995b. Insulin sensitivity and mitochondrial gene mutation. Diabet. Care 18,

273–275


.

Wallace, D.C., Singh, G., Lott, M.T., Hodge, J.A., Schurr, T.G., Lezza, A.M., et al., 1988.

Mitochondrial DNA mutation associated with Leber’s hereditary optic

neuropathy. Science 242, 1427–1430

.

Whittaker, R.G., Schaefer, A.M., McFarland, R., Taylor, R.W., Walker, M., Turnbull,



D.M., 2007. Prevalence and progression of diabetes in mitochondrial disease.

Diabetologia 50, 2085–2089

.

Whittaker, R.G., Blackwood, J.K., Alston, C., Blakely, E.L., Elson, J.L., McFarland, R.,



et al., 2009. Urine heteroplasmy level is the best predictor of clinical outcome in

patients with the m.3243A > G mtDNA mutation. Neurology 72, 568–569

.

Wilichowski, E., Grüters, A., Kruse, K., Rating, D., Beetz, R., Korenke, G.C., et al., 1997.



Hypoparathyroidism and deafness associated with pleioplasmic large scale

rearrangements of the mitochondrial DNA: a clinical and molecular genetic

study of four children with Kearns-Sayre syndrome. Pediatr. Res. 41, 193–200

.

Williams, T.B., Daniels, M., Puthenveetil, G., Chang, R., Wang, R.Y., Abdenur, J.E.,



2012. Pearson syndrome: unique endocrine manifestations including neonatal

diabetes and adrenal insufficiency. Mol. Genet. Metab. 106, 104–107

.

Wolny, S., McFarland, R., Chinnery, P., Cheetham, T., 2009. Abnormal growth in



mitochondrial disease. Acta Paediatr. 98, 553–554

.

Ylikallio, E., Suomalainen, A., 2012. Mechanisms of mitochondrial diseases. Ann.



Med. 44, 41–59

.

Yorifuji, T., Kawai, M., Momoi, T., Sasaki, H., Furusho, K., Muroi, J., et al., 1996.



Nephropathy and growth hormone deficiency in a patient with mitochondrial

tRNA


Leu(UUR)

mutation. J. Med. Genet. 33, 621–622

.

Yu-Wai-Man, P., Griffiths, P.G., Gorman, G.S., Lourenco, C.M., Wright, A.F., Auer-



Grumbach, M., et al., 2010. Multi-system neurological disease is common in

patients with OPA1 mutations. Brain 133, 771–786

.

A.M. Schaefer et al. / Molecular and Cellular Endocrinology 379 (2013) 2–11



11

Mitochondrial function and insulin secretion

Pierre Maechler

Department of Cell Physiology and Metabolism, Geneva University Medical Centre, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland



a r t i c l e i n f o

Article history:

Available online 20 June 2013

Keywords:

b-cell

Pancreatic islets



Insulin secretion

Mitochondria

Diabetes

a b s t r a c t

In the endocrine fraction of the pancreas, the b-cell rapidly reacts to fluctuations in blood glucose concen-

trations by adjusting the rate of insulin secretion. Glucose-sensing coupled to insulin exocytosis depends

on transduction of metabolic signals into intracellular messengers recognized by the secretory machin-

ery. Mitochondria play a central role in this process by connecting glucose metabolism to insulin release.

Mitochondrial activity is primarily regulated by metabolic fluxes, but also by dynamic morphology

changes and free Ca

2+

concentrations. Recent advances of mitochondrial Ca



2+

homeostasis are discussed;

in particular the roles of the newly-identified mitochondrial Ca

2+

uniporter MCU and its regulatory part-



ner MICU1, as well as the mitochondrial Na

+

–Ca



2+

exchanger. This review describes how mitochondria

function both as sensors and generators of metabolic signals; such as NADPH, long chain acyl-CoA, glu-

tamate. The coupling factors are additive to the Ca

2+

signal and participate to the amplifying pathway of



glucose-stimulated insulin secretion.

Ó 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

1.1. The pancreatic b-cell

Glucose homeostasis depends on optimal regulation of insulin

secretion from the b-cells and the action of insulin on its target tis-

sues; in particular muscles, liver, and adipose tissue. The b-cells are

located in the endocrine fraction of the pancreas, i.e., the islets of

Langerhans. In humans, b-cells constitute about 70% of the islets

of Langerhans, which are spread throughout the pancreas and

compose 1–2% of this organ (

Rahier et al., 1983

). It means that

among the 10

13

–10


14

of cells composing our body, the 10

9

b-cells


contribute to less than 0.01% of this count. In other words, one sin-

gle drop of blood contains as much red blood cells as our whole

body contains b-cells. Nevertheless, this minute amount of endo-

crine tissue is essential for life since there is no alternative hor-

mone to insulin, as dramatically illustrated by patients suffering

from type 1 diabetes. The cytoplasm of each b-cell contains about

13,000 secretory granules filled with crystallized insulin (

Dean,


1973

). During glucose stimulation only a small proportion of the

granule pool undergoes exocytosis.

1.2. Diabetes and the b-cell

The initial stages of type 1 diabetes, before b-cell destruction,

are characterized by defects in the function of b-cells (

O’Sullivan-

Murphy and Urano, 2012

). The large majority of diabetic patients

are classified as type 2 diabetes, or non-insulin dependent diabetes

mellitus. The patients display dysregulation of insulin secretion, of-

ten combined with insulin resistance of target tissues. The aetiol-

ogy of type 2 diabetes is still poorly understood and has been

elucidated in only a limited number of subtypes. Among these,

maturity onset diabetes of the young (MODY) and mitochondrial

diabetes have been linked to specific gene mutations and primary

b-cell dysfunction (

Froguel et al., 1993; Byrne et al., 1996; Clocquet

et al., 2000; Maassen et al., 2004

). The impact of such mutations on

the b-cell highlights the importance of the mitochondria in the

control of insulin secretion. Other endocrine tissues play an impor-

tant role in metabolic dysregulation and the reader is referred to

the other articles of this special issue of Molecular and Cellular

Endocrinology

for corresponding information.

1.3. Metabolic activation of the b-cell

Both the secretion and the action of insulin contribute to glu-

cose homeostasis. Regulated insulin release requires tight coupling

in the b-cell between glucose metabolism and insulin secretory re-

sponse. The exocytotic process is closely controlled by signals gen-

erated by nutrient metabolism (

Fig. 1

), as well as by



neurotransmitters and circulating hormones (

Huypens et al.,

2000; Schuit et al., 2001; Rubi and Maechler, 2010

). The b-cell rap-

idly reacts to fluctuations in the blood glucose concentration by

adjusting the rate of insulin secretion. This review describes the

molecular basis of metabolism–secretion coupling. In particular,

it will be discussed how mitochondria function both as sensors

and generators of metabolic signals.

0303-7207/$ - see front matter

Ó 2013 Elsevier Ireland Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.mce.2013.06.019

Tel.: +41 22 379 55 54.



E-mail address:

Pierre.Maechler@unige.ch

Molecular and Cellular Endocrinology 379 (2013) 12–18

Contents lists available at

SciVerse ScienceDirect

Molecular and Cellular Endocrinology

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m c e


2. Overview of metabolism–secretion coupling in b-cells

2.1. Pathways upstream of mitochondria

In b-cells, metabolism–secretion coupling refers to both the

consensus model and the contribution of additional coupling fac-

tors, i.e., the trigger and amplifying pathways of glucose-stimu-

lated insulin secretion (

Fig. 1

). This process is initiated by the



passive entry of glucose within the b-cell across the plasma mem-

brane through GLUT2 and its subsequent phosphorylation by glu-

cokinase, thereby promoting glycolysis (

Iynedjian, 2009

). In the

cytosolic compartment, glycolysis extracts reducing equivalents

transmitted to NADH. Maintenance of glycolytic flux requires reox-

idation of NADH to NAD

+

to avoid arrest of glycolysis.



In most tissues, cytosolic conversion of pyruvate to lactate by

the lactate dehydrogenase ensures NADH oxidation to NAD

+

, while


in b-cells this task is devoted mainly to mitochondrial NADH shut-

tles, transferring glycolysis-derived electrons to mitochondria.

2.2. The mitochondrial NADH shuttle system

The mitochondrial NADH shuttle system is composed of the

glycerolphosphate and the malate/aspartate shuttles (

MacDonald,

1982

), with its respective key members the mitochondrial glycerol



phosphate dehydrogenase (mGPDH) and the aspartate–glutamate

carrier (AGC). The aspartate–glutamate carrier 1 (AGC1, also

named Aralar1) is a Ca

2+

-sensitive member of the malate/aspartate



shuttle (

del Arco and Satrustegui, 1998

). Overexpression of AGC1

increases glucose-induced mitochondrial activation and secretory

response, both in insulinoma INS-1E cells and rat islets (

Rubi


et al., 2004

). This is accompanied by enhanced glucose oxidation

and reduced lactate production. In insulinoma INS-1E b-cells, the

mirror experiment consisting in silencing AGC1 reduces glucose

oxidation and the secretory response, although primary rat b-cells

are not sensitive to such a manoeuvre (

Casimir et al., 2009

). There-

fore, aspartate–glutamate carrier capacity appears to set a limit for

NADH shuttle function and mitochondrial metabolism, exhibiting

cell type-specific dependence. The importance of the NADH shuttle

system illustrates the tight coupling between glycolysis and mito-

chondrial activation in b-cells, optimizing transfer of pyruvate into

mitochondria through the recently identified mitochondrial pyru-

vate carrier (

Herzig et al., 2012

). Subsequently, catabolism of glu-

cose-derived pyruvate induces mitochondrial activation resulting

in ATP generation. Although mitochondria, and the Krebs cycle in

particular, also oxidize fatty acids and amino acids, carbohydrates

are the most important fuel under physiological conditions for the

b-cell.


2.3. Pathways downstream of mitochondria

Export of ATP to the cytosolic compartment promotes the clo-

sure of ATP-sensitive K

+

-channels (K



ATP

-channel) on the plasma

membrane and, as a consequence, depolarization of the cell (

Ash-


croft, 2006

). This leads to Ca

2+

influx through voltage-gated Ca



2+

channels and a rise in cytosolic Ca

2+

concentrations (



Fig. 1

), which


is the main and necessary signal for exocytosis of insulin (

Eliasson


et al., 2008

). Additional signals are required to sustain the secretion

elicited by glucose-induced Ca

2+

rise. They participate in the ampli-



fying pathway (

Maechler et al., 2006

), formerly referred to as the

K

ATP



-channel independent stimulation of insulin secretion. Effi-

cient coupling of glucose recognition to insulin secretion is ensured

by the mitochondrion, an organelle that integrates and generates

metabolic signals (

Maechler et al., 2006

). This role is additive to

the generation of ATP necessary for the elevation of cytosolic

Ca

2+



. The list of additive factors proposed to amplify the Ca

2+

sig-



nals comprises cAMP, NADPH, long chain acyl-CoA derivatives, glu-

tamate, and superoxides. As opposed to the recognized primary

role of Ca

2+

as a necessary signal, the roles of most of these additive



factors are still under debate.

3. Metabolic activation of mitochondria

3.1. Activation of the Krebs cycle

Pyruvate entry within the mitochondria induces metabolic acti-

vation of this organelle. There, pyruvate either loses one carbon to

Fig. 1. Model for coupling of glucose metabolism to insulin secretion in the b-cell. Glucose equilibrates across the plasma membrane and is phosphorylated by glucokinase

(GK). Further, glycolysis produces pyruvate, which preferentially enters the mitochondria and is metabolized by the TCA cycle. The TCA cycle generates reducing equivalents

transferred by NADH and FADH

2

to the electron transport chain (ETC), leading to hyperpolarization of the mitochondrial membrane (D



w

m

) and generation of ATP. ATP is then



transferred to the cytosol, raising the ATP/ADP ratio. Subsequently, closure of K

ATP


-channels depolarizes the cell membrane (D

w

c



). This opens voltage-dependent Ca

2+

channels, increasing cytosolic Ca



2+

concentration ([Ca

2+

]

c



), which triggers insulin exocytosis. The amplifying pathway of metabolism–secretion coupling is contributed by

additive coupling factors.

P. Maechler / Molecular and Cellular Endocrinology 379 (2013) 12–18

13


generate acetyl-CoA or gains one carbon to form oxaloacetate;

reactions catalyzed by pyruvate dehydrogenase (PDH) and pyru-

vate carboxylase (PC), respectively (

Fig. 2


). PDH is an important

site of regulation as, among other effectors, the enzyme is activated

by an elevation of mitochondrial [Ca

2+

] (



Duchen, 1999; Rutter

et al., 1996

). PDH is also regulated by reversible phosphorylation

of its E1

a

subunit, activity of the PDH kinases inhibiting the en-



zyme (

Sugden and Holness, 2003

). Increasing the expression of

either the PDH phosphatase or the PDH kinase 3 does not change

glucose-stimulated insulin secretion (

Nicholls, 2002

). Regarding

down-regulation of PDH kinases, silencing of PDH kinase 1 in

INS-1 832/13 cells has been reported to increase the secretory re-

sponse to glucose (

Krus et al., 2010

), whereas knockdown of both

PDH kinase 1 and kinase 3 in INS-1E cells does not affect metabo-

lism–secretion coupling (

Akhmedov et al., 2012

). Therefore, the

importance of the phosphorylation state of PDH for the regulation

of b-cell function remains unclear.

Condensation of the 2-carbon acetyl group carried by coen-

zyme-A with the 4-carbon oxaloacetate yields citrate, thereby acti-

vating the tricarboxylic acid (TCA) cycle (or Krebs cycle). The

pyruvate carboxylase enzyme ensures the provision of carbon skel-

eton (i.e., anaplerosis) to the TCA cycle, a key pathway in b-cells

(

Fransson et al., 2006



). The remarkably high anaplerotic activity

in b-cells indicates important loss of TCA cycle intermediates

(i.e., cataplerosis), which is compensated for by de novo oxaloace-

tate synthesis by pyruvate carboxylation. In the control of glu-

cose-stimulated insulin secretion, TCA cycle intermediates are

recruited to serve as substrates leading to the formation of mito-

chondrion-derived coupling factors (

Maechler et al., 2006

).

Through its oxidative activity, the TCA cycle extracts reducing



equivalents from metabolic intermediates, which are then trans-

ported mainly by NADH and, quantitatively less important, by

FADH

2

. In order to maintain input of pyruvate products into the



TCA cycle upon glucose stimulation, this reduced redox state re-

quires continues reoxidation of mitochondrial NADH to NAD

+

. This


is achieved primarily by complex I NADH dehydrogenase on the

electron transport chain. However, as complex I activity is limited

by the inherent thermodynamic constraints of proton gradient for-

mation, excess of NADH contributed by the high TCA cycle activity

must be reoxidized by alternative dehydrogenases, i.e., through

cataplerotic reactions.

3.2. Activation of the electron transport chain

TCA cycle activation induces transfer of reducing equivalents to

the electron transport chain resulting in hyperpolarization of the

mitochondrial membrane, respiration, and generation of ATP

(

Fig. 2


). Electron transport chain activity promotes proton export

from the mitochondrial matrix across the inner membrane, estab-

lishing a strong mitochondrial membrane potential, which is neg-

ative on the inside. The respiratory chain comprises five

complexes, the subunits of which are encoded by both the nuclear

and mitochondrial genomes (

Wallace, 1999

). Complex I is the

acceptor of electrons from NADH in the inner mitochondrial mem-

brane and complex II (succinate dehydrogenase) transfers elec-

trons to coenzyme-Q from FADH

2

, the latter being generated



both by the oxidative activity of the TCA cycle and the glycerol-

phosphate shuttle. Complex V (ATP synthase) promotes ATP for-

mation from ADP and inorganic phosphate. The synthesized ATP

is translocated to the cytosol in exchange for ADP by the adenine

nucleotide translocator (ANT). Thus, the actions of the separate

complexes of the electron transport chain and the adenine nucleo-

tide translocator couple respiration to ATP supply.

3.3. Regulation of mitochondrial activity by Ca

2+

Mitochondrial activity can be modulated according to the nat-



ure of the nutrients, although glucose is the chief secretagogue as

compared to amino acid catabolism (

Newsholme et al., 2005

) and


fatty acid b-oxidation (

Rubi et al., 2002

). Additional factors regulat-

ing mitochondrial activation include mitochondrial Ca

2+

concen-


trations ([Ca

2+

]



m

) (


Duchen, 1999; McCormack et al., 1990

),

Fig. 2. In the mitochondria, pyruvate (Pyr) is a substrate both for pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC), forming respectively acetyl-CoA and



oxaloacetate (OA). Condensation acetyl-CoA with OA generates citrate that is either processed by the TCA cycle or exported out of the mitochondrion as a precursor for long

chain acyl-CoA (LC-CoA) synthesis. The glycerophosphate and malate/aspartate shuttles, as well as the TCA cycle, generate reducing equivalents in the form of NADH and

FADH

2

, which are transferred to the electron transport chain (ETC). This leads to the hyperpolarization of the mitochondrial membrane (



w

m

) and the synthesis of ATP, then



transported to the cytosol by the adenine nucleotide translocator (ANT). Upon glucose stimulation, glutamate (Glut) is produced from

a

-ketoglutarate (



a

KG) by glutamate

dehydrogenase (GDH) and exported out of mitochondria through the glutamate carrier (GC1). Ca

2+

enters into mitochondria via MCU (regulated by MICU1) and gets out via



NCLX

.

14



P. Maechler / Molecular and Cellular Endocrinology 379 (2013) 12–18

mitochondrial protein tyrosine phosphatase (

Pagliarini et al.,

2005

), mitochondrial GTP (



Kibbey et al., 2007

), and matrix alkalin-

ization (

Wiederkehr et al., 2009

). Among these factors, mitochon-

drial Ca


2+

regulation has recently been highlighted, thanks to a

series of discoveries related to Ca

2+

transport through the mito-



chondrial membrane. Elevation of [Ca

2+

]



m

enhances mitochondrial

oxidative activity (

Maechler et al., 1998

) and promotes generation

of coupling factors for insulin exocytosis (

Maechler et al., 1997

).

Conversely, buffering mitochondrial free Ca



2+

limits [Ca

2+

]

m



peaks

induced by glucose stimulation in INS-1E b-cells. Such limitation

in [Ca

2+

]



m

amplitude reduces mitochondrial respiration and ATP

generation with corresponding effects on insulin secretion (

Wie-


derkehr et al., 2011

).

In the recent years, significant advances in mitochondrial Ca



2+

channels have been made. In 2011, the mitochondrial Ca

2+

uni-


porter (MCU) has been identified as the channel responsible for

mitochondrial Ca

2+

uptake (


Baughman et al., 2011; De Stefani

et al., 2011

). MCU is part of a complex located in the inner mito-

chondrial membrane and its activity is modulated by another re-

cently identified protein, the mitochondrial Ca

2+

uptake 1



(MICU1). MICU1 holds Ca

2+

sensing subunits, in other words two



canonical EF hands, which are essential for its activity (

Perocchi


et al., 2010

). If Ca


2+

gets in mitochondria, it should also get out at

some point, although the vast majority of mitochondrial Ca

2+

is



buffered as chelated ion. Mitochondrial Ca

2+

efflux is thought to



be mediated by the Na

2+

/Ca



2+

exchanger (NCLX) identified in

2010 (

Palty et al., 2010



). Therefore, MCU and MICU1 would be

implicated in mitochondrial Ca

2+

uptake, whereas NCLX would be



responsible for Ca

2+

efflux (



Fig. 2

).

In pancreatic b-cells, silencing of NCLX extends elevations of



[Ca

2+

]



m

evoked by cell depolarization and also accelerates the rise

in ATP/ADP ratio in response to glucose stimulation (

Tarasov et al.,

2012

). Consistently, the rise in [Ca



2+

]

m



evoked by glucose is en-

hanced in b-cells when NCLX is silenced or expressed in a domi-

nant negative form (

Nita et al., 2012

). These recent data are in

agreement with a previous study showing increased mitochondrial

metabolism and enhanced glucose-stimulated insulin secretion

when the Na

2+

/Ca


2+

exchanger was pharmacologically inhibited

by CGP37157 (

Lee et al., 2003

). Regarding the role of NCLX in

ATP production, the inhibitor CGP37157 increases glucose-induced

ATP generation, whereas knockdown of NCLX using siRNA does not

(

Nita et al., 2012



), suggesting additional effects of CGP37157.

Ca

2+



import into mitochondria is regulated by the recently iden-

tified MCU (

Baughman et al., 2011; De Stefani et al., 2011

) and


MICU1 (

Perocchi et al., 2010

). Silencing of MCU in b-cells impairs

the rise in [Ca

2+

]

m



evoked by cell depolarization and reduces the

plateau phase of ATP/ADP ratio upon glucose stimulation (

Tarasov

et al., 2012



). Accordingly, knockdown of MCU in mouse b-cells

inhibits glucose-induced exocytosis (

Tarasov et al., 2013

). Such


manipulation of [Ca

2+

]



m

does not affect mitochondrial membrane

potential, either at basal or stimulatory glucose concentrations

(

Tarasov et al., 2012



). Regarding MICU1, its silencing in insulinoma

cells reduces mitochondrial Ca

2+

uptake, ATP levels, and insulin



secretion upon glucose stimulation (

Alam et al., 2012

). In the same

study, knockdown of MCU provoked similar inhibitory effects

(

Alam et al., 2012



). Collectively, these recent findings indicate that

both the channel and its regulatory partner, i.e., MCU and MICU1

respectively, are necessary for proper regulation of [Ca

2+

]



m

in b-


cells and participate to glucose-stimulated insulin secretion.

3.4. Regulation of mitochondrial dynamics

Mitochondrial activation also involves changes in organelle

morphology and contacts, in particular with the Ca

2+

-rich endo-



plasmic reticulum (

de Brito and Scorrano, 2010

). Mitochondria

form dynamic networks, continuously modified by fission and

fusion events under the control of specific mitochondrial mem-

brane anchor proteins (

Westermann, 2008

). Over the last years,

mitochondrial fission/fusion state was investigated in insulin

secreting cells. Altering fission by down regulation of fission-pro-

moting Fis1 protein impairs respiratory function and glucose-stim-

ulated insulin secretion (

Twig et al., 2008

). Intriguingly, a similar

phenotype, i.e., reduced energy metabolism and secretory defects,

is caused by the mirror experiment consisting in mitochondrial

fragmentation by overexpression of Fis1 (

Park et al., 2008

). Adding

puzzlement to our comprehension of mitochondrial dynamics in b-

cell function, fragmented pattern obtained by dominant-negative

expression of fusion-promoting Mfn1 protein does not affect

metabolism–secretion coupling (

Park et al., 2008

). Recently, it

was reported that glucose stimulation of INS-1E cells induces

reversible shortening of mitochondrial tubules (

Jhun et al., 2013

).

Expression of a dominant-negative mutant of fission-promoting



Drp1 prevents glucose-induced mitochondria shortening and insu-

lin secretion (

Jhun et al., 2013

). Therefore, mitochondrial fragmen-

tation per se seems not to alter insulin secreting cells, at least not

in vitro


. Regarding Ca

2+

homeostasis, mitochondrial fragmentation



in mouse b-cells lacking prohibitin-2 is associated with blunted

glucose-induced Ca

2+

rise but preserved KCl response; indicating



that ATP generation rather than Ca

2+

channels is defective in these



cells (S. Supale and P. Maechler, unpublished observation). In vivo,

transgenic mice with b-cell-specific ablation of fusion-promoting

Opa1 are hyperglycaemic. Islets from these mice exhibit disman-

tled mitochondrial architecture, reduced ATP generation and insu-

lin release (

Zhang et al., 2011

). Additionally, b-cell proliferation is

reduced in b-cell-specific Opa1-deficient mice (

Zhang et al., 2011

).

4. Mitochondria as the source of additional coupling factors for



insulin exocytosis

4.1. Mitochondria as a source of coupling factors

Glucose metabolism induces the triggering and the amplifying

pathways, in other words the necessary Ca

2+

rise and generation



of additional coupling factors, respectively (

Henquin, 2000

). The

amplifying pathway can be experimentally uncovered when glu-



cose stimulation occurs whilst cytosolic Ca

2+

is clamped at permis-



sive levels (

Gembal et al., 1992

). This suggests the existence of

metabolic coupling factors, generated by glucose, participating to

the amplifying pathway. Mitochondria have been identified as a

source of additional coupling factors for insulin exocytosis. For in-

stance, the demonstration has been done using permeabilized

insulin-secreting cells clamped with permissive Ca

2+

concentra-



tions and stimulated with mitochondrial substrates (

Maechler


et al., 1997

).

4.2. Mitochondria as a source of nucleotides serving as coupling factors



ATP is undoubtedly the primary metabolic factor produced by

mitochondria during glucose-stimulated insulin secretion. ATP

closes the K

ATP


-channel leading to the obligatory Ca

2+

elevation



promoting insulin exocytosis (

Miki et al., 1999

). Moreover, ATP is

implicated in secretory granule movement (

Yu et al., 2000; Varadi

et al., 2002

), priming of the granules prior to exocytosis (

Eliasson


et al., 1997

), and in the process of insulin exocytosis per se (

Vallar

et al., 1987; Rorsman et al., 2000



).

The purine nucleoside GTP is also implicated to some extent in

the process of metabolism–secretion coupling. In the cytosol, GTP

is mainly generated through the action of nucleoside diphosphate

kinase from ATP-dependent phosphorylation of GDP. Glucose stim-

ulation raises GTP levels (

Detimary et al., 1996

), promoting insulin

exocytosis via the activity of GTPases (

Vallar et al., 1987

). In

P. Maechler / Molecular and Cellular Endocrinology 379 (2013) 12–18



15

mitochondria, GTP acts as a positive regulator of the TCA cycle

(

Kibbey et al., 2007



).

NADH and its phosphorylated form NADPH are responsible for

transfer of reducing equivalents in biochemical pathways. NADPH

is mostly found in the cytosolic compartment, whilst NADH is par-

ticularly abundant in mitochondria. Glucose stimulation modifies

the redox state of these pyridine nucleotides, raising the

NAD(P)H/NAD(P)

+

ratio (



Capito et al., 1984

), first in the cytosol

and then in mitochondria (

Patterson et al., 2000

). Consistent with

the model of metabolism–secretion coupling, increase in NAD(P)H

precedes the elevation in cytosolic Ca

2+

concentrations (



Pralong

et al., 1990

). Beside the rapid changes in NAD(P)H/NAD(P)

+

ratio,



the total pool of NADPH is elevated upon glucose stimulation

through the phosphorylating activity of NAD-kinase (

Gray et al.,

2012


).

Cytosolic NADPH is generated by glucose metabolism via the

pentose phosphate shunt (

Verspohl et al., 1979

), although in b-

cells mitochondrial shuttles appear to play an important role in

this process (

Farfari et al., 2000

). The export of citrate out of the

mitochondria might serve as a signal of fuel abundance, participat-

ing in metabolism–secretion coupling (

Farfari et al., 2000

). Once in

the cytosolic compartment, citrate metabolism contributes to the

formation of NADPH and malonyl-CoA, both candidate molecules

on the list of metabolic coupling factors.

NADPH has been proposed as a coupling factor in glucose-stim-

ulated insulin secretion, originally by using toadfish islets (

Watkins

et al., 1968



) indicating a direct effect of NADPH on the release of

insulin (

Watkins, 1972

) secondary to the uptake of NADPH by

granules (

Watkins and Moore, 1977

). Subsequently, the role of

NADPH as a coupling factor has been substantiated by experiments

showing direct stimulation of insulin exocytosis upon intracellular

addition of NADPH (

Ivarsson et al., 2005

). It has also been reported

that the NADPH/NADP

+

ratio mediates a fast-inactivating K



+

cur-


rent through regulation of Kv2.1 channels (

MacDonald et al., 2003

).

Finally, the second messenger cAMP robustly potentiates glu-



cose-stimulated insulin secretion (

Ahren, 2000

). Glucose stimula-

tion can promote elevation of cAMP (

Charles et al., 1975

) that is

generated by adenylyl cyclase at the plasma membrane using

ATP. The cAMP levels are negatively modulated by superoxide, an

effect mediated by NADPH oxidases (

Li et al., 2012

). In particular,

the glucose response of islets deficient in NOX2 is characterized

by lower superoxide, higher cAMP levels, and increased insulin

secretion (

Li et al., 2012

). Among other hormones, glucagon and

GLP-1 (glucagon-like peptide 1) increase cAMP concentrations in

b-cells (

Schuit et al., 2001

), resulting in the amplification of the

secretory response to glucose in human islets (

Huypens et al.,

2000

). In addition to its effects on insulin release, GLP-1 might pre-



serve b-cell mass, rendering this hormone and biologically active

related molecules of interest for the treatment of diabetes (

Drucker

and Nauck, 2006



).

4.3. Mitochondria as a source of precursors for fatty acids serving as

coupling factors

The relative contribution of glucose versus lipid products for

oxidative catabolism shapes the metabolic profile of mitochondria.

The rate-limiting step for transport and oxidation of fatty acids into

mitochondria is catalyzed by carnitine palmitoyltransferase (the li-

ver isoform LCPTI in the b-cell). Upon glucose stimulation, citrate

derived from mitochondria reacts with coenzyme-A (CoA) to gen-

erate cytosolic acetyl-CoA necessary for the synthesis malonyl-

CoA and then long-chain acyl-CoA. The malonyl-CoA thus formed

reduces fatty acid oxidation by inhibiting LCPTI. The hypothesis

that malonyl-CoA/long-chain acyl-CoA act as coupling factors in

the secretory response was originally based on the inhibition of

fatty acid oxidation by malonyl-CoA, which increases the availabil-

ity of lipid signals implicated in exocytosis (

Brun et al., 1996

). In


the cytosol, this process promotes the accumulation of long chain

acyl-CoAs such as palmitoyl-CoA (

Liang and Matschinsky, 1991;

Prentki et al., 1992

), enhancing Ca

2+

-evoked insulin exocytosis



(

Deeney et al., 2000

). Accordingly, LCPTI overexpression in INS-

1E b-cells increases oxidation of fatty acids, whilst it reduces glu-

cose-stimulated insulin secretion (

Rubi et al., 2002

). To date, the

exact role of long chain acyl-CoA derivatives is still debated, sev-

eral studies indicating that malonyl-CoA acts as a factor regulating

the partitioning of fatty acids into effectors in insulin exocytosis

(

Prentki et al., 2002



). Fatty acids derived from triglyceride stores

may also play a permissive role in the secretory response (

Frigerio

et al., 2010; Peyot et al., 2009

).

4.4. Mitochondria as a source of glutamate serving as coupling factor



The observation of direct stimulation of insulin exocytosis by

mitochondrial activation in permeabilized b-cells (

Maechler

et al., 1997

) led to the identification of glutamate as a putative

intracellular messenger (

Maechler and Wollheim, 1999; Hoy

et al., 2002; Maechler et al., 2002

). Collectively, work from our lab-

oratory and others indicate that permissive levels of glutamate are

necessary for the full development of the secretory response to

glucose stimulation. The cytosolic target of glutamate might be

the insulin granule itself, as several studies by different groups

have shown requirement of glutamate uptake by secretory vesicles

for insulin exocytosis (

Maechler and Wollheim, 1999; Hoy et al.,

2002; Eto et al., 2003; Gammelsaeter et al., 2011; Storto et al.,

2006


).

If intracellular glutamate renders insulin granules exocytosis-

competent, concentrations of this amino acid should raise in re-

sponse to glucose stimulation. Indeed, during glucose stimulation

total cellular glutamate levels have been shown to increase in hu-

man, mouse and rat islets as well as in clonal b-cells (

Maechler and

Wollheim, 1999; Rubi et al., 2001; Brennan et al., 2002; Bertrand

et al., 2002; Broca et al., 2003; Carobbio et al., 2004; Lehtihet

et al., 2005

), When b-cells are forced to express an enzyme that

decarboxylates intracellular glutamate, the glucose-induced gluta-

mate rise is impaired as well as the secretory response (

Rubi et al.,

2001

). The mitochondrial enzyme glutamate dehydrogenase



(GDH), encoded by Glud1, plays a key role in glucose-induced glu-

tamate generation (

Fig. 2

). Abrogation of GDH specifically in the b-



cells of bGlud1

À/À


mice reduces the secretory response (

Carobbio


et al., 2009

). Moreover, measurements of carbon fluxes in mouse

islets revealed that, upon glucose stimulation, GDH contributes

to the net synthesis of glutamate from the TCA cycle intermediate

a

-ketoglutarate (



Vetterli et al., 2012

). In b-cells lacking GDH, glu-

cose-stimulated insulin secretion is reduced by half, correlating

with impaired glutamate formation while the Ca

2+

rise is preserved



(

Vetterli et al., 2012

). Importantly, the amplifying pathway charac-

terizing the full development of the glucose response fails to devel-

op in the absence of GDH, as demonstrated in bGlud1

À/À


islets

(

Vetterli et al., 2012



).

Regarding export of the newly synthesized glutamate out of

mitochondria, the glutamate carrier GC1 seems to play an impor-

tant role. Silencing of GC1 reduces glucose-stimulated insulin

secretion, an effect rescued by the provision of exogenous gluta-

mate to the b-cell (

Casimir et al., 2009

). Finally, prevention of glu-

tamate release from b-cells results in concomitant elevations of

intracellular glutamate levels and glucose-evoked insulin secretion

(

Feldmann et al., 2011



). Collectively, data indicate that permissive

levels of glutamate are required in the amplifying pathway of the

b-cell. Permissive concentrations of glutamate are also important

for proper function of the malate–aspartate shuttle, an key player

in insulin secreting cells (

Rubi et al., 2004; Casimir et al, 2009

),

as discussed above.



16

P. Maechler / Molecular and Cellular Endocrinology 379 (2013) 12–18



5. Conclusion

In pancreatic b-cells, mitochondrial activity translates glucose

metabolism into signals controlling the rate of insulin exocytosis.

Consequently, mitochondrial function can adjust insulin secretion

to the actual glycemia. This role is specific for b-cells, since in most

cell types mitochondrial metabolism is triggered by specific needs

of the cells, in terms of energy and building blocks. In b-cells, mito-

chondrial metabolism is primarily dictated by the glycolytic flux.

The concept of metabolism–secretion coupling that characterizes

the b-cell is tightly controlled by on and off signals, most of them

requiring mitochondrial function. Future studies should better de-

fine the molecular targets and mechanism of action of coupling

factors controlling insulin secretion.

Acknowledgments

The author’s laboratory benefits from continuous support by

the Swiss National Science Foundation and the State of Geneva.

The most precious contribution of present and past members of

the laboratory is acknowledged.

References

Ahren, B., 2000. Autonomic regulation of islet hormone secretion–implications for

health and disease. Diabetologia 43, 393–410

.

Akhmedov, D., De Marchi, U., Wollheim, C.B., Wiederkehr, A., 2012. Pyruvate



dehydrogenase E1alpha phosphorylation is induced by glucose but does not

control metabolism–secretion coupling in INS-1E clonal beta-cells. Biochim.

Biophys. Acta 1823, 1815–1824

.

Alam, M.R., Groschner, L.N., Parichatikanond, W., Kuo, L., Bondarenko, A.I., Rost, R.,



Waldeck-Weiermair, M., Malli, R., Graier, W.F., 2012. Mitochondrial Ca

2+

uptake



1 (MICU1) and mitochondrial Ca

2+

uniporter (MCU) contribute to metabolism–



secretion coupling in clonal pancreatic beta-cells. J. Biol. Chem. 287, 34445–

34454


.

Ashcroft, F.M., 2006. K(ATP) channels and insulin secretion: a key role in health and

disease. Biochem. Soc. Trans. 34, 243–246

.

Baughman, J.M., Perocchi, F., Girgis, H.S., Plovanich, M., Belcher-Timme, C.A., Sancak,



Y., Bao, X.R., Strittmatter, L., Goldberger, O., Bogorad, R.L., Koteliansky, V.,

Mootha, V.K., 2011. Integrative genomics identifies MCU as an essential

component of the mitochondrial calcium uniporter. Nature 476, 341–345

.

Bertrand, G., Ishiyama, N., Nenquin, M., Ravier, M.A., Henquin, J.C., 2002. The



elevation of glutamate content and the amplification of insulin secretion in

glucose-stimulated pancreatic islets are not causally related. J. Biol. Chem. 277,

32883–32891

.

Brennan, L., Shine, A., Hewage, C., Malthouse, J.P., Brindle, K.M., McClenaghan, N.,



Flatt, P.R., Newsholme, P., 2002. A nuclear magnetic resonance-based

demonstration of substantial oxidative

L

-alanine metabolism and



L

-alanine-

enhanced glucose metabolism in a clonal pancreatic beta-cell line: metabolism

of

L



-alanine is important to the regulation of insulin secretion. Diabetes 51,

1714–1721

.

Broca, C., Brennan, L., Petit, P., Newsholme, P., Maechler, P., 2003. Mitochondria-



derived glutamate at the interplay between branched-chain amino acid and

glucose-induced insulin secretion. FEBS Lett. 545, 167–172

.

Brun, T., Roche, E., Assimacopoulos-Jeannet, F., Corkey, B.E., Kim, K.H., Prentki, M.,



1996. Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic beta-cell

nutrient signaling. Diabetes 45, 190–198

.

Byrne, M.M., Sturis, J., Menzel, S., Yamagata, K., Fajans, S.S., Dronsfield, M.J., Bain,



S.C., Hattersley, A.T., Velho, G., Froguel, P., Bell, G.I., Polonsky, K.S., 1996. Altered

insulin secretory responses to glucose in diabetic and nondiabetic subjects with

mutations in the diabetes susceptibility gene MODY3 on chromosome 12.

Diabetes 45, 1503–1510

.

Capito, K., Hedeskov, C.J., Landt, J., Thams, P., 1984. Pancreatic islet metabolism and



redox state during stimulation of insulin secretion with glucose and fructose.

Acta Diabetol. Lat. 21, 365–374

.

Carobbio, S., Ishihara, H., Fernandez-Pascual, S., Bartley, C., Martin-Del-Rio, R.,



Maechler, P., 2004. Insulin secretion profiles are modified by overexpression of

glutamate dehydrogenase in pancreatic islets. Diabetologia 47, 266–276

.

Carobbio, S., Frigerio, F., Rubi, B., Vetterli, L., Bloksgaard, M., Gjinovci, A.,



Pournourmohammadi, S., Herrera, P.L., Reith, W., Mandrup, S., Maechler, P.,

2009. Deletion of glutamate dehydrogenase in beta-cells abolishes part of the

insulin secretory response not required for glucose homeostasis. J. Biol. Chem.

284, 921–929

.

Casimir, M., Rubi, B., Frigerio, F., Chaffard, G., Maechler, P., 2009. Silencing of the



mitochondrial NADH shuttle component aspartate–glutamate carrier AGC1/

Aralar1 in INS-1E cells and rat islets. Biochem. J. 424, 459–466

.

Casimir, M., Lasorsa, F.M., Rubi, B., Caille, D., Palmieri, F., Meda, P., Maechler, P.,



2009. Mitochondrial glutamate carrier GC1 as a newly identified player in the

control of glucose-stimulated insulin secretion. J. Biol. Chem. 284, 25004–

25014

.

Charles, M.A., Lawecki, J., Pictet, R., Grodsky, G.M., 1975. Insulin secretion.



Interrelationships of glucose, cyclic adenosine 3:5-monophosphate, and

calcium. J. Biol. Chem. 250, 6134–6140

.

Clocquet, A.R., Egan, J.M., Stoffers, D.A., Muller, D.C., Wideman, L., Chin, G.A., Clarke,



W.L., Hanks, J.B., Habener, J.F., Elahi, D., 2000. Impaired insulin secretion and

increased insulin sensitivity in familial maturity-onset diabetes of the young 4

(insulin promoter factor 1 gene). Diabetes 49, 1856–1864

.

de Brito, O.M., Scorrano, L., 2010. An intimate liaison: spatial organization of the



endoplasmic reticulum-mitochondria relationship. EMBO J. 29, 2715–2723

.

De Stefani, D., Raffaello, A., Teardo, E., Szabo, I., Rizzuto, R., 2011. A forty-kilodalton



protein of the inner membrane is the mitochondrial calcium uniporter. Nature

476, 336–340

.

Dean, P.M., 1973. Ultrastructural morphometry of the pancreatic-cell. Diabetologia



9, 115–119

.

Deeney, J.T., Gromada, J., Hoy, M., Olsen, H.L., Rhodes, C.J., Prentki, M., Berggren, P.O.,



Corkey, B.E., 2000. Acute stimulation with long chain acyl-CoA enhances

exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J. Biol.

Chem. 275, 9363–9368

.

del Arco, A., Satrustegui, J., 1998. Molecular cloning of Aralar, a new member of the



mitochondrial carrier superfamily that binds calcium and is present in human

muscle and brain. J. Biol. Chem. 273, 23327–23334

.

Detimary, P., Van den Berghe, G., Henquin, J.C., 1996. Concentration dependence



and time course of the effects of glucose on adenine and guanine nucleotides in

mouse pancreatic islets. J. Biol. Chem. 271, 20559–20565

.

Drucker, D.J., Nauck, M.A., 2006. The incretin system: glucagon-like peptide-1



receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes.

Lancet 368, 1696–1705

.

Duchen, M.R., 1999. Contributions of mitochondria to animal physiology: from



homeostatic sensor to calcium signalling and cell death. J. Physiol. 516, 1–17

.

Eliasson, L., Renstrom, E., Ding, W.G., Proks, P., Rorsman, P., 1997. Rapid ATP-



dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in

mouse pancreatic B-cells. J. Physiol. 503, 399–412

.

Eliasson, L., Abdulkader, F., Braun, M., Galvanovskis, J., Hoppa, M.B., Rorsman, P.,



2008. Novel aspects of the molecular mechanisms controlling insulin secretion.

J. Physiol. 586, 3313–3324

.

Eto, K., Yamashita, T., Hirose, K., Tsubamoto, Y., Ainscow, E.K., Rutter, G.A., Kimura,



S., Noda, M., Iino, M., Kadowaki, T., 2003. Glucose metabolism and glutamate

analog acutely alkalinize pH of insulin secretory vesicles of pancreatic {beta}-

cells. Am. J. Physiol. Endocrinol. Metab. 285, E262–E271

.

Farfari, S., Schulz, V., Corkey, B., Prentki, M., 2000. Glucose-regulated anaplerosis



and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/

citrate shuttle in insulin secretion. Diabetes 49, 718–726

.

Feldmann, N., Del Rio, R.M., Gjinovci, A., Tamarit-Rodriguez, J., Wollheim, C.B.,



Wiederkehr, A., 2011. Reduction of plasma membrane glutamate transport

potentiates insulin but not glucagon secretion in pancreatic islet cells. Mol. Cell

Endocrinol. 338, 46–57

.

Fransson, U., Rosengren, A.H., Schuit, F.C., Renstrom, E., Mulder, H., 2006.



Anaplerosis via pyruvate carboxylase is required for the fuel-induced rise in

the ATP:ADP ratio in rat pancreatic islets. Diabetologia 49, 1578–1586

.

Frigerio, F., Brun, T., Bartley, C., Usardi, A., Bosco, D., Ravnskjaer, K., Mandrup, S.,



Maechler, P., 2010. Peroxisome proliferator-activated receptor alpha

(PPARalpha) protects against oleate-induced INS-1E beta cell dysfunction by

preserving carbohydrate metabolism. Diabetologia 53, 331–340

.

Froguel, P., Zouali, H., Vionnet, N., Velho, G., Vaxillaire, M., Sun, F., Lesage, S., Stoffel,



M., Takeda, J., Passa, P., 1993. Familial hyperglycemia due to mutations in

glucokinase. Definition of a subtype of diabetes mellitus. N. Engl. J. Med. 328,

697–702

.

Gammelsaeter, R., Coppola, T., Marcaggi, P., Storm-Mathisen, J., Chaudhry, F.A.,



Attwell, D., Regazzi, R., Gundersen, V., 2011. A role for glutamate transporters in

the regulation of insulin secretion. PLoS One 6, e22960

.

Gembal, M., Gilon, P., Henquin, J.C., 1992. Evidence that glucose can control insulin



release independently from its action on ATP-sensitive K

+

channels in mouse B



cells. J. Clin. Invest. 89, 1288–1295

.

Gray, J.P., Alavian, K.N., Jonas, E.A., Heart, E.A., 2012. NAD kinase regulates the size of



the NADPH pool and insulin secretion in pancreatic beta-cells. Am. J. Physiol.

Endocrinol. Metab. 303, E191–E199

.

Henquin, J.C., 2000. Triggering and amplifying pathways of regulation of insulin



secretion by glucose. Diabetes 49, 1751–1760

.

Herzig, S., Raemy, E., Montessuit, S., Veuthey, J.L., Zamboni, N., Westermann, B.,



Kunji, E.R., Martinou, J.C., 2012. Identification and functional expression of the

mitochondrial pyruvate carrier. Science 337, 93–96

.

Hoy, M., Maechler, P., Efanov, A.M., Wollheim, C.B., Berggren, P.O., Gromada, J., 2002.



Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-

cells. FEBS Lett. 531, 199–203

.

Huypens, P., Ling, Z., Pipeleers, D., Schuit, F., 2000. Glucagon receptors on human



islet cells contribute to glucose competence of insulin release. Diabetologia 43,

1012–1019

.

Ivarsson, R., Quintens, R., Dejonghe, S., Tsukamoto, K., In ‘t Veld, P., Renstrom, E.,



Schuit, F.C., 2005. Redox control of exocytosis: regulatory role of NADPH,

thioredoxin, and glutaredoxin. Diabetes 54, 2132–2142

.

Iynedjian, P.B., 2009. Molecular physiology of mammalian glucokinase. Cell Mol.



Life Sci. 66, 27–42

.

Jhun, B.S., Lee, H., Jin, Z.G., Yoon, Y., 2013. Glucose stimulation induces dynamic



change of mitochondrial morphology to promote insulin secretion in the

insulinoma cell line INS-1E. PLoS One 8, e60810

.

P. Maechler / Molecular and Cellular Endocrinology 379 (2013) 12–18



17

Kibbey, R.G., Pongratz, R.L., Romanelli, A.J., Wollheim, C.B., Cline, G.W., Shulman,

G.I., 2007. Mitochondrial GTP regulates glucose-stimulated insulin secretion.

Cell Metab. 5, 253–264

.

Krus, U., Kotova, O., Spegel, P., Hallgard, E., Sharoyko, V.V., Vedin, A., Moritz, T.,



Sugden, M.C., Koeck, T., Mulder, H., 2010. Pyruvate dehydrogenase kinase 1

controls mitochondrial metabolism and insulin secretion in INS-1 832/13 clonal

beta-cells. Biochem. J. 429, 205–213

.

Lee, B., Miles, P.D., Vargas, L., Luan, P., Glasco, S., Kushnareva, Y., Kornbrust, E.S.,



Grako, K.A., Wollheim, C.B., Maechler, P., Olefsky, J.M., Anderson, C.M., 2003.

Inhibition of mitochondrial Na(+)–Ca(2+) exchanger increases mitochondrial

metabolism and potentiates glucose-stimulated insulin secretion in rat

pancreatic islets. Diabetes 52, 965–973

.

Lehtihet, M., Honkanen, R.E., Sjoholm, A., 2005. Glutamate inhibits protein



phosphatases and promotes insulin exocytosis in pancreatic beta-cells.

Biochem. Biophys. Res. Commun. 328, 601–607

.

Li, N., Li, B., Brun, T., Deffert-Delbouille, C., Mahiout, Z., Daali, Y., Ma, X.J., Krause,



K.H., Maechler, P., 2012. NADPH oxidase NOX2 defines a new antagonistic role

for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion.

Diabetes 61, 2842–2850

.

Liang, Y., Matschinsky, F.M., 1991. Content of CoA-esters in perifused rat islets



stimulated by glucose and other fuels. Diabetes 40, 327–333

.

Maassen, J.A., LM, T.H., Van Essen, E., Heine, R.J., Nijpels, G., Jahangir Tafrechi, R.S.,



Raap, A.K., Janssen, G.M., Lemkes, H.H., 2004. Mitochondrial diabetes: molecular

mechanisms and clinical presentation. Diabetes 53 (Suppl. 1), S103–S109

.

MacDonald, M.J., 1982. Evidence for the malate aspartate shuttle in pancreatic



islets. Arch. Biochem. Biophys. 213, 643–649

.

MacDonald, P.E., Salapatek, A.M., Wheeler, M.B., 2003. Temperature and redox state



dependence of native Kv2.1 currents in rat pancreatic beta-cells. J. Physiol. 546,

647–653


.

Maechler, P., Wollheim, C.B., 1999. Mitochondrial glutamate acts as a messenger in

glucose-induced insulin exocytosis. Nature 402, 685–689

.

Maechler, P., Kennedy, E.D., Pozzan, T., Wollheim, C.B., 1997. Mitochondrial



activation directly triggers the exocytosis of insulin in permeabilized

pancreatic beta-cells. EMBO J. 16, 3833–3841

.

Maechler, P., Kennedy, E.D., Wang, H., Wollheim, C.B., 1998. Desensitization of



mitochondrial Ca

2+

and insulin secretion responses in the beta cell. J. Biol.



Chem. 273, 20770–20778

.

Maechler, P., Gjinovci, A., Wollheim, C.B., 2002. Implication of glutamate in the



kinetics of insulin secretion in rat and mouse perfused pancreas. Diabetes 51

(S1), S99–S102

.

Maechler, P., Carobbio, S., Rubi, B., 2006. In beta-cells, mitochondria integrate and



generate metabolic signals controlling insulin secretion. Int. J. Biochem. Cell.

Biol. 38, 696–709

.

McCormack, J.G., Halestrap, A.P., Denton, R.M., 1990. Role of calcium ions in



regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70,

391–425


.

Miki, T., Nagashima, K., Seino, S., 1999. The structure and function of the ATP-

sensitive K

+

channel in insulin-secreting pancreatic beta-cells. J. Mol.



Endocrinol. 22, 113–123

.

Newsholme, P., Brennan, L., Rubi, B., Maechler, P., 2005. New insights into amino



acid metabolism, beta-cell function and diabetes. Clin. Sci. (London) 108, 185–

194


.

Nicholls, D.G., 2002. Mitochondrial function and dysfunction in the cell: its

relevance to aging and aging-related disease. Int. J. Biochem. Cell. Biol. 34,

1372–1381

.

Nita, I.I., Hershfinkel, M., Fishman, D., Ozeri, E., Rutter, G.A., Sensi, S.L., Khananshvili,



D., Lewis, E.C., Sekler, I., 2012. The mitochondrial Na

+

/Ca



2+

exchanger

upregulates glucose dependent Ca

2+

signalling linked to insulin secretion.



PLoS One 7, e46649

.

O’Sullivan-Murphy, B., Urano, F., 2012. ER stress as a trigger for beta-cell



dysfunction and autoimmunity in type 1 diabetes. Diabetes 61, 780–781

.

Pagliarini, D.J., Wiley, S.E., Kimple, M.E., Dixon, J.R., Kelly, P., Worby, C.A., Casey, P.J.,



Dixon, J.E., 2005. Involvement of a mitochondrial phosphatase in the regulation

of ATP production and insulin secretion in pancreatic beta cells. Mol. Cell. 19,

197–207

.

Palty, R., Silverman, W.F., Hershfinkel, M., Caporale, T., Sensi, S.L., Parnis, J., Nolte, C.,



Fishman, D., Shoshan-Barmatz, V., Herrmann, S., Khananshvili, D., Sekler, I.,

2010. NCLX is an essential component of mitochondrial Na

+

/Ca


2+

exchange.

Proc. Natl. Acad. Sci. USA 107, 436–441

.

Park, K.S., Wiederkehr, A., Kirkpatrick, C., Mattenberger, Y., Martinou, J.C., Marchetti,



P., Demaurex, N., Wollheim, C.B., 2008. Selective actions of mitochondrial

fission/fusion genes on metabolism–secretion coupling in insulin-releasing

cells. J. Biol. Chem. 283, 33347–33356

.

Patterson, G.H., Knobel, S.M., Arkhammar, P., Thastrup, O., Piston, D.W., 2000.



Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H

responses in pancreatic islet beta cells. Proc. Natl. Acad. Sci. USA 97, 5203–5207

.

Perocchi, F., Gohil, V.M., Girgis, H.S., Bao, X.R., McCombs, J.E., Palmer, A.E., Mootha,



V.K., 2010. MICU1 encodes a mitochondrial EF hand protein required for Ca(2+)

uptake. Nature 467, 291–296

.

Peyot, M.L., Guay, C., Latour, M.G., Lamontagne, J., Lussier, R., Pineda, M., Ruderman,



N.B., Haemmerle, G., Zechner, R., Joly, E., Madiraju, S.R., Poitout, V., Prentki, M.,

2009. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated

insulin secretion. J. Biol. Chem. 284, 16848–16859

.

Pralong, W.F., Bartley, C., Wollheim, C.B., 1990. Single islet beta-cell stimulation by



nutrients: relationship between pyridine nucleotides, cytosolic Ca

2+

and



secretion. EMBO J. 9, 53–60

.

Prentki, M., Vischer, S., Glennon, M.C., Regazzi, R., Deeney, J.T., Corkey, B.E., 1992.



Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in

nutrient-induced insulin secretion. J. Biol. Chem. 267, 5802–5810

.

Prentki, M., Joly, E., El-Assaad, W., Roduit, R., 2002. Malonyl-CoA signaling, lipid



partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in

the etiology of diabetes. Diabetes 51 (Suppl. 3), S405–S413

.

Rahier, J., Goebbels, R.M., Henquin, J.C., 1983. Cellular composition of the human



diabetic pancreas. Diabetologia 24, 366–371

.

Rorsman, P., Eliasson, L., Renstrom, E., Gromada, J., Barg, S., Gopel, S., 2000. The cell



physiology of biphasic insulin secretion. News Physiol. Sci. 15, 72–77

.

Rubi, B., Maechler, P., 2010. Minireview: new roles for peripheral dopamine on



metabolic control and tumor growth: let’s seek the balance. Endocrinology 151,

5570–5581

.

Rubi, B., Ishihara, H., Hegardt, F.G., Wollheim, C.B., Maechler, P., 2001. GAD65-



mediated glutamate decarboxylation reduces glucose-stimulated insulin

secretion in pancreatic beta cells. J. Biol. Chem. 276, 36391–36396

.

Rubi, B., Antinozzi, P.A., Herrero, L., Ishihara, H., Asins, G., Serra, D., Wollheim, C.B.,



Maechler, P., Hegardt, F.G., 2002. Adenovirus-mediated overexpression of liver

carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and

insulin secretion. Biochem. J. 364, 219–226

.

Rubi, B., del Arco, A., Bartley, C., Satrustegui, J., Maechler, P., 2004. The malate–



aspartate NADH shuttle member Aralar1 determines glucose metabolic fate,

mitochondrial activity, and insulin secretion in beta cells. J. Biol. Chem. 279,

55659–55666

.

Rutter, G.A., Burnett, P., Rizzuto, R., Brini, M., Murgia, M., Pozzan, T., Tavare, J.M.,



Denton, R.M., 1996. Subcellular imaging of intramitochondrial Ca

2+

with



recombinant targeted aequorin: significance for the regulation of pyruvate

dehydrogenase activity. Proc. Natl. Acad. Sci. USA 93, 5489–5494

.

Schuit, F.C., Huypens, P., Heimberg, H., Pipeleers, D.G., 2001. Glucose sensing in



pancreatic beta-cells: a model for the study of other glucose-regulated cells in

gut, pancreas, and hypothalamus. Diabetes 50, 1–11

.

Storto, M., Capobianco, L., Battaglia, G., Molinaro, G., Gradini, R., Riozzi, B., Di



Mambro, A., Mitchell, K.J., Bruno, V., Vairetti, M.P., Rutter, G.A., Nicoletti, F.,

2006. Insulin secretion is controlled by mGlu5 metabotropic glutamate

receptors. Mol. Pharmacol. 69, 1234–1241

.

Sugden, M.C., Holness, M.J., 2003. Recent advances in mechanisms regulating



glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs.

Am. J. Physiol. Endocrinol. Metab. 284, E855–E862

.

Tarasov, A.I., Semplici, F., Ravier, M.A., Bellomo, E.A., Pullen, T.J., Gilon, P., Sekler, I.,



Rizzuto, R., Rutter, G.A., 2012. The mitochondrial Ca

2+

uniporter MCU is



essential for glucose-induced ATP increases in pancreatic beta-cells. PLoS One 7,

e39722


.

Tarasov, A.I., Semplici, F., Li, D., Rizzuto, R., Ravier, M.A., Gilon, P., Rutter, G.A., 2013.

Frequency-dependent mitochondrial Ca

2+

accumulation regulates ATP



synthesis in pancreatic b cells. Pflugers Arch 465, 543–554

.

Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L.,



Haigh, S.E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B.F., Yuan, J., Deeney, J.T., Corkey,

B.E., Shirihai, O.S., 2008. Fission and selective fusion govern mitochondrial

segregation and elimination by autophagy. EMBO J. 27, 433–446

.

Vallar, L., Biden, T.J., Wollheim, C.B., 1987. Guanine nucleotides induce Ca



2+

-

independent insulin secretion from permeabilized RINm5F cells. J. Biol. Chem.



262, 5049–5056

.

Varadi, A., Ainscow, E.K., Allan, V.J., Rutter, G.A., 2002. Involvement of conventional



kinesin in glucose-stimulated secretory granule movements and exocytosis in

clonal pancreatic beta-cells. J. Cell. Sci. 115, 4177–4189

.

Verspohl, E.J., Handel, M., Ammon, H.P., 1979. Pentosephosphate shunt activity of



rat pancreatic islets: its dependence on glucose concentration. Endocrinology

105, 1269–1274

.

Vetterli, L., Carobbio, S., Pournourmohammadi, S., Martin-Del-Rio, R., Skytt, D.M.,



Waagepetersen, H.S., Tamarit-Rodriguez, J., Maechler, P., 2012. Delineation of

glutamate pathways and secretory responses in pancreatic islets with beta-cell

specific abrogation of the glutamate dehydrogenase. Mol. Biol. Cell. 23, 3851–3862

.

Wallace, D.C., 1999. Mitochondrial diseases in man and mouse. Science 283, 1482–



1488

.

Watkins, D.T., 1972. Pyridine nucleotide stimulation of insulin release from isolated



toadfish insulin secretion granules. Endocrinology 90, 272–276

.

Watkins, D.T., Moore, M., 1977. Uptake of NADPH by islet secretion granule



membranes. Endocrinology 100, 1461–1467

.

Watkins, D., Cooperstein, S.J., Dixit, P.K., Lazarow, A., 1968. Insulin secretion from



toadfish islet tissue stimulated by pyridine nucleotides. Science 162, 283–284

.

Westermann, B., 2008. Molecular machinery of mitochondrial fusion and fission. J.



Biol. Chem. 283, 13501–13505

.

Wiederkehr, A., Park, K.S., Dupont, O., Demaurex, N., Pozzan, T., Cline, G.W.,



Wollheim, C.B., 2009. Matrix alkalinization: a novel mitochondrial signal for

sustained pancreatic beta-cell activation. EMBO J. 28, 417–428

.

Wiederkehr, A., Szanda, G., Akhmedov, D., Mataki, C., Heizmann, C.W., Schoonjans,



K., Pozzan, T., Spat, A., Wollheim, C.B., 2011. Mitochondrial matrix calcium is an

activating signal for hormone secretion. Cell Metab. 13, 601–611

.

Yu, W., Niwa, T., Fukasawa, T., Hidaka, H., Senda, T., Sasaki, Y., Niki, I., 2000.



Synergism of protein kinase A, protein kinase C, and myosin light-chain kinase

in the secretory cascade of the pancreatic beta-cell. Diabetes 49, 945–952

.

Zhang, Z., Wakabayashi, N., Wakabayashi, J., Tamura, Y., Song, W.J., Sereda, S., Clerc,



P., Polster, B.M., Aja, S.M., Pletnikov, M.V., Kensler, T.W., Shirihai, O.S., Iijima, M.,

Hussain, M.A., Sesaki, H., 2011. The dynamin-related GTPase Opa1 is required

for glucose-stimulated ATP production in pancreatic beta cells. Mol. Biol. Cell

22, 2235–2245

.

18

P. Maechler / Molecular and Cellular Endocrinology 379 (2013) 12–18



Mitochondrial and skeletal muscle health with advancing age

Adam R. Konopka, K. Sreekumaran Nair

Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States



a r t i c l e i n f o

Article history:

Available online 16 May 2013

Keywords:

Aging

Sarcopenia



Mitochondria

Protein metabolism

a b s t r a c t

With increasing age there is a temporal relationship between the decline of mitochondrial and skeletal

muscle volume, quality and function (i.e., health). Reduced mitochondrial mRNA expression, protein

abundance, and protein synthesis rates appear to promote the decline of mitochondrial protein quality

and function. Decreased mitochondrial function is suspected to impede energy demanding processes

such as skeletal muscle protein turnover, which is critical for maintaining protein quality and thus skel-

etal muscle health with advancing age. The focus of this review was to discuss promising human phys-

iological systems underpinning the decline of mitochondrial and skeletal muscle health with advancing

age while highlighting therapeutic strategies such as aerobic exercise and caloric restriction for combat-

ing age-related functional impairments.

Ó 2013 Published by Elsevier Ireland Ltd.

1. Introduction

Reports of skeletal muscle atrophy that accompany advancing

age (i.e., sarcopenia) and the associated reductions in skeletal mus-

cle function and quality have been observed for several decades

(

Critchley, 1931; Rosenberg, 1989, 1997



). Recently, panels of lead-

ing scientists and physicians associated with large-scale epidemio-

logical studies have created specific, objective criteria based on

lean tissue mass and functional capacity to improve the diagnosis

and treatment of sarcopenia (

Delmonico et al., 2007; Fielding et al.,

2011; Goodpaster et al., 2006; Morley et al., 2011; Newman et al.,

2003


). Human aging starts after the third decade and the progres-

sion of skeletal muscle atrophy with age is a slow process (1% per

year), but accelerates as humans approach 80 years of age (

Baum-


gartner et al., 1998

). With expansion in human lifespan, the ele-

vated rate of muscle loss becomes more problematic since

skeletal muscle is critical for functionality and substrate metabo-

lism. When the substrate reservoir deteriorates with age, the asso-

ciated cardiometabolic disease states (i.e. insulin resistance,

diabetes, cardiovascular disease, obesity) become more prevalent

(

Atlantis et al., 2009



). Many studies have observed reduced skeletal

muscle mass and infiltration of adipose tissue depots within or be-

tween skeletal muscle groups that are associated with reduced

muscle function, insulin resistance and obesity (

Delmonico et al.,

2009; Goodpaster et al., 2005, 2000

). A key link between a reduc-

tion in skeletal muscle health and prevalence of metabolic disor-

ders with advancing age may be related to impaired

mitochondrial function. A reduction in mitochondrial abundance

and function with age has been observed across various species

(c elegans, drosphilla, mice, humans) and tissues (skin, nerve,

brain, skeletal muscle). Moreover, perturbations in skeletal muscle

mitochondrial energetics have been correlated with reduced aero-

bic capacity (

Short et al., 2005a

), walking capacity (

Coen et al.,

2012

) and skeletal muscle function (



Safdar et al., 2010

) in older

adults. The mechanisms of age-related changes in skeletal muscle

are multifactorial but the purpose of this review is to highlight

the apparent temporal and functional connection between the de-

cline of mitochondrial and skeletal muscle health (

Fig. 1

).

2. Reduced mitochondrial content and function with age



Electron microscopic assessment of skeletal muscle biopsy sam-

ples revealed lower mitochondrial volume density in older adults

(

Conley et al., 2000



). A decline in mitochondrial content, as repre-

sented by mitochondrial DNA copy number, has also been demon-

strated in rodents (

Barazzoni et al., 2000

) and humans (

Short et al.,

2005a

). These findings, coupled with investigations that observed



reduced levels of mitochondrial protein synthesis (

Rooyackers

et al., 1996

) and expression of proteins encoded by both mitochon-

drial and nuclear DNA (

Lanza et al., 2008; Short et al., 2005a

), are

expected to alter mitochondrial function. Semi-quantitative analy-



ses, such as immunoblotting or maximal enzyme activity, support

the notion that aging skeletal muscle contains less abundance of

enzymes in oxidative metabolism (i.e. Krebs Cycle, beta-oxidation)

and/or proteins involved in the electron transport chain (ETC) (

Coo-

per et al., 1992; Ghosh et al., 2011; Lanza et al., 2008; Rooyackers



et al., 1996; Tonkonogi et al., 2003; Trounce et al., 1989

). Collec-

tively, reductions in mitochondrial proteins and volume may limit

0303-7207/$ - see front matter

Ó 2013 Published by Elsevier Ireland Ltd.

http://dx.doi.org/10.1016/j.mce.2013.05.008

Corresponding author. Address: Mayo Clinic, 200 First St. SW, Joseph 5-194,



Rochester, MN, United States. Tel.: +1 507 255 2415; fax: +1 507 255 4828.

E-mail address:

nair.sree@mayo.edu

(K. Sreekumaran Nair).

Molecular and Cellular Endocrinology 379 (2013) 19–29

Contents lists available at

SciVerse ScienceDirect

Molecular and Cellular Endocrinology

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m c e


ATP production for energy demanding processes such as myocellu-

lar remodeling to maintain protein quality.

Advancements of in vitro and ex vivo measures of mitochondrial

energetics have detected diminished capacity for basal (

Petersen

et al., 2003

) and maximal (

Conley et al., 2000; Kent-Braun and

Ng, 2000; Short et al., 2005a

) mitochondrial ATP synthesis in older

adults. When expressing the rate of mitochondrial ATP synthesis

relative to mitochondrial content there remains a deficit in older

adults suggesting that there is not only a reduction in mitochon-

drial protein content but also mitochondrial protein quality. These

findings appear to be related to physical activity, as sedentary indi-

viduals had lower in vivo mitochondrial function compared to ac-

tive individuals (

Kent-Braun and Ng, 2000; Larsen et al., 2012

). It

is important to acknowledge that in aging human skeletal muscle,



findings of mitochondrial dysfunction are highly equivocal and the

disparity between studies is not well discussed. In

Table 1

we pro-


vide potential confounding variables related to the characteristics

of research participants (column A) as well as the use of various

measurements of mitochondrial abundance or function (column

B). Key differences exist when interpreting data since each mea-

surement in

Table 1


assesses different constituents of mitochon-

drial abundance or function and each method presents key

strengths and weaknesses as has been reviewed in detail previ-

ously (


Lanza and Nair, 2010; Perry et al., 2013

). One difference

could be comparisons between content or maximal activities of en-

zymes in the mitochondrial matrix (e.g., citrate synthase, bHAD)

which are completely encoded by nuclear DNA vs. proteins in-

volved in oxidative phosphorylation (e.g., cytochrome c oxidase,

NADH) that are encoded by both nuclear and mitochondrial gen-

omes. Although analysis of maximal mitochondrial energetics

in vivo

(i.e.,


31

P-MRS) and ex vivo (i.e., high-resolution respirome-

try) are highly correlated (

Lanza et al., 2011

), subtle discrepancies

still exist between different approaches for measuring mitochon-

drial function in vivo (basal vs. maximally stimulated) and ex vivo

(ATP production vs. oxygen respiration; permeabilized fibers vs.

isolated mitochondria). Also, sampling of human muscle tissue

from various muscle groups consisting of different recruitment

patterns and fiber type composition can create conflicting results

between studies. These variables need to be recognized and ad-

dressed to properly assess the true age-related phenotype. Glob-

ally, when investigations utilize large sample sizes and rigorous

control to avoid many of the confounding variables there appears

to be an age-related decline in mitochondrial protein content,

quality and function in the quadriceps femoris muscles. These data

provide well-founded evidence for perturbations in mitochondrial

health and connections to impaired functional capacity during sed-

entary aging.

Aerobic training is an effective exercise prescription to stimu-

late markers of oxidative capacity as established in the 1960s (

Hol-

loszy, 1967



), when it was revealed that aerobic exercise of

sufficient intensity increased mitochondrial enzyme activity in ani-

mal models. Numerous other investigations have confirmed these

results, however, few studies in humans have directly investigated

if age influences exercise induced mitochondrial adaptations after

the same exercise training program. From the few available stud-

ies, it appears that mitochondrial molecular regulation and protein

content are increased after 12–16 weeks of exercise training, inde-

pendent of age, suggesting older individuals (<80 y) adapt favor-

ably to exercise training (

Ghosh et al., 2011; Short et al., 2003

).

However, the influence of various exercise training programs (i.e.,



aerobic vs. resistance vs. concurrent training) on mitochondrial

and skeletal muscle function (ex vivo or in vivo) has yet to be deter-

mined and warrants investigation. Collectively, these data suggest

that exercise can improve or prevent the loss of mitochondrial

health during sedentary aging (

Fig. 2


).

3. Molecular Regulation of Aging Mitochondria

The mitochondria consist of proteins encoded from both mito-

chondrial (mtDNA) and nuclear DNA (nDNA). Although mtDNA

contains just 27 genes that encode 13 proteins (all within the elec-

tron transport chain), 2 ribosomal and 22 translational RNA, proper

organelle biogenesis and function require input from both gen-


Download 2.44 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   23




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling