«Многогранники» одна из основных в традиционном курсе школьной геометрии. Они составляют, можно сказать, центральный предмет стереометрии
Download 355.93 Kb.
|
Реферат по математике на тему «Многогранники»
- Bu sahifa navigatsiya:
- Заключение
Задача 3 .
В наклонной призме проведено сечение, перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l. Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 28). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl. Задача 4. Боковое ребро пирамиды разделено на четыре равные части и через точки деления проведены плоскости, параллельные основанию. Площадь основания равна 400 см2. Найдите площади сечений. Решение. Сечения подобны основанию пирамиды с коэффициентами подобия ¼, 2/4, и ¾. Площади подобных фигур относятся как квадраты линейных размеров. Поэтому отношения площадей сечений к площади основания пирамиды есть (¼)2 , (2/4)2 , и (¾)2 . Следовательно, площади сечений равны 400 (¼ )2 =25 (см2 ), 400 (2/4)2 =100 (см2 ), 400 (¾)2 =225 (см2 ). Задача 5. Докажите, что боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему. Решение. Боковые грани усеченной пирамиды — трапеции с одним и тем же верхним основанием а, нижним b и высотой (апофемой) l. Поэтому площадь одной грани равна ½ (а + b)l. Площадь всех граней, т. е. боковая поверхность, равна ½ (аn + bn)l, где n — число вершин у основания пирамиды, an и bn — периметры оснований пирамиды. ЗаключениеИсследовательская работа была интересной и разнообразной и заставила понять, что мир, окружающий нас, подчиняется законам геометрии. В рамках работы над рефератом была изучена литература по теме, выявлены особенности правильных многогранников, изготовлены чертежи, развёртки, модели правильных многогранников. Многогранник в трёхмерном пространстве, совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); от любого из многоугольников, составляющих Многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, — к смежному с ним, и т. д. Эти многоугольники называются гранями, их стороны — рёбрами, а их вершины — вершинами Многогранника. Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к правильным многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши. Форма первоэлемента Земли - куб, Воздуха - октаэдр, Огня - тетраэдр, Воды - икосаэдр, а всему миру творец придал форму пятиугольного додекаэдра. О том, что Земля имеет форму шара, учили Пифагорейцы. По Пифагору, существует 5 телесных фигур: высшее божество само построило Вселенную на основании геометрической формы додекаэдра. Земля подобна Вселенной, и у Платона Земля – тоже додекаэдр. Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона. Платон (427–347 до н.э.) – великий древнегреческий философ, основатель Академии и родоначальник традиции платонизма. Одним из существенных черт его учения является рассмотрение идеальных объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, идеальные объекты. Однако и сам Платон, и многие древние математики вкладывали в термин идеальный не только смысл абстрактный, но и смысл наилучший. В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие те, которые имеют своими гранями правильные многоугольники. Теория многогранников – один из увлекательных и ярких разделов математики. В представленном реферате была рассмотрена только одна часть этой теории. Из правильных многогранников – платоновых тел – можно получить так называемые полуправильные многогранники, или архимедовы тела, гранями которых являются также правильные, но разноимённые многоугольники, а также звёздные правильные тела. Download 355.93 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling