Multifractal analysis of sentence lengths in English literary texts
Download 0.71 Mb. Pdf ko'rish
|
References
[1] M.H. Christiansen, N. Chater, Language as shaped by the brain, Behav. Brain Sci. vol. 31, pp. 489-509 (2008) [2] J. Kwapień, S. Drożdż, Physical approach to complex systems, Phys. Rep. vol. 515, pp. 115-226 (2012) [3] R. Ferrer-i-Cancho, R.V. Solé, Two regimes in the frequency of words and the origins of complex lexicons: Zipf’s law revisited, J. Quant. Ling. vol. 8, pp. 165-173 (2001) [4] L. Lü, Z.-K. Zhang, T. Zhou, Scaling laws in human language, preprint arXiv:1202.2903 (2012) [5] B. Corominas-Murtra, J. Fortuny, R.V. Solé, Emergence of Zipfs law in the evolution of communication, Phys. Rev. E vol. 83, no. 036115 (2011) [6] M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law, Cont. Phys. vol. 45, pp. 323-351 (2005) [7] S.K. Baek, S. Bernhardsson, P. Minnhagen, Zipf’s law unzipped, New J. Phys. vol. 4, no. 043004 (2011) [8] I. Grabska-Gradzińska, A. Kulig, J. Kwapień, S. Drożdż, Complex network analysis of literary and scientific texts, Int. J. Mod. Phys. Vol. 23, no. 7 (2012) [9] C.G. Nevill-Manning, I.H. Witten, Identifying hierarchical structure in sequences: a linear-time algorithm, J. Artif. Intell. Res. vol. 7, pp. 67-82 (1997) [10] W. Ebeling, T. Pöschel, Entropy and long range correlations in literary English, Europhys. Lett. vol.26, pp.241-246 (1994) [11] J.M. Hausdorff, P.L. Purdon, C.-K. Peng, Z. Ladin, J.Y. Wei, A.L. Goldberger, Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations, J. Appl. Physiol. vol. 80, pp. 1448- 1457 (1996) [12] M.P. Paulus, M.A. Geyer, D.L. Braff, Long-range correlations in choice sequences of schizophrenic patients, Schi. Res. vol. 35, pp. 69-75 (1999) [13] K. Linkenkaer-Hansen, V.V. Nikouline, J.M. Palva, R.J. Ilmoniemi, Long-range temporal correlations and scaling behavior in human brain oscillations, J. Neurosci. vol. 21, pp. 1370-1377 (2001) [14] K. Torre, R. Balasubramaniam, N. Rheaume, L. Lemoine, H.N. Zelaznik, Long-range correlation properties in motor timing are individual and task specific, Psychon. Bull. Rev. vol. 18, pp. 339-346 (2011) [15] J. Gillet, M. Ausloos, A comparison of natural (English) and artificial (esperanto) languages. A multifractal method based analysis, preprint arXiv:0801.2510 (2008) [16] W. Ebeling, A. Neiman, Long-range correlations between letters and sentences in texts, Physica A vol. 215, pp. 233-241 (1995) [17] L. Hřebiček, Persistence and other aspects of sentence-length series, J. Quant. Ling. vol. 4, pp. 105- 109 (1997) [18] M.A. Montemurro, P.A. Pury, Long-range correlations in literary corpora, Fractals vol. 10, pp. 451-461 (2002) [19] S.S. Melnyk, O.V. Usatenko, V.A. Yampol’skii, Competition between two kinds of correlations in literary texts, Phys. Rev. E vol. 72, no. 026140 (2005) [20] G. Sahin, M. Erentürk, A. Hacinliyan, Detrended fluctuation analysis in natural languages using non- corpus parametrization, Chaos Solit. Fract. vol. 41, pp. 198-205 (2009) [21] J. Bhan, S. Kim, J. Kim, Y. Kwon, S. Yang, K. Lee, "Long- range correlations in Korean literary corpora, Chaos Solit. Fract. vol. 29, pp. 69-81 (2006) [22] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Mosaic organization of DNA nucleotides, Phys. Rev. E vol. 49, pp. 1685-1689 (1994) [23] A.N. Pavlov, W. Ebeling, L. Molgedey, A.R. Ziganshin, V.S. Anishchenko, Scaling features of texts, images and time series, Physica A vol. 300, pp. 310-324 (2001) [24] J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A vol. 316, pp. 87-114 (2002) [25] A. Arneodo, E. Bacry, J.F. Muzy, The thermodynamics of fractals revisited with wavelets, Physica A vol. 213-275, pp. 232 (1995) [26] P. Oświęcimka, J. Kwapień, S. Drożdż, Wavelet versus detrended fluctuation analysis of multifractal structures, Phys. Rev. E vol. 74, no. 016103 (2006) [27] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A vol. 33, pp. 1141-1151 (1986) [28] S. Drożdż, J. Kwapień, P. Oświęcimka, R. Rak, Quantitative features of multifractal subtleties in time series, EPL vol. 88, no. 60003 (2009) Download 0.71 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling