Murakkab funksiyaning hosilasini yuqori tartibli hosilalarni hisoblash
Download 194.5 Kb.
|
Murakkab funksiyaning hosilasini yuqori tartibli hosilalarni his
- Bu sahifa navigatsiya:
- Differensiallanuvchi funksiya uchun o`rta qiymat haqida teoremalar. Teylor formulasi. Lopital qoidasi
- Roll teoremasi
- Lagranj formulasi
4. Teskari funksiya hosilalari
y = f (x) funksiya (a; b) intervalda differensiallanuvchi bo`lib, shu intervalda uzluksiz x = g(y) teskari funksiyaga ega va y(x) ≠ 0 bo`lsin. U holda, x = g(y) teskari funksiya ham differensiallanuvchi bo`lib, tenglik o`rinli bo`ladi. Oxirgi tenglikni u bo`yicha differensiallaymiz va yxx mavjud bo`lsa, Differensiallashni davom etib, teskari funksiyaning istalgan tartibli hosilasini aniqlash mumkin. Masalan, y = ex (y > 0) funksiya uchun x = lny teskari funksiyadir. Uning hosilasi . Differensiallanuvchi funksiya uchun o`rta qiymat haqida teoremalar. Teylor formulasi. Lopital qoidasi 1. Differensiallanuvchi funksiya uchun o`rta qiymat haqida Roll va Lagranj teoremalari Differensiallanuvchi funksiyalar uchun o`rta qiymat haqidagi teoremalar nomini olgan tasdiqlardan asosiylari bilan tanishamiz. Roll teoremasi: y = f (x) funksiya [a; b] kesmada aniqlangan va uz-luksiz bo`lsin. Agar funksiya (a; b) intervalda differensiallanuvchi bo`lib, f (a) = f (b) tenglik o`rinli bo`lsa, u holda (a; b) intervalga tegishli hech bo`l-maganda bitta shunday bir s nuqta topiladiki, f (c) = 0 bo`ladi. Teoremani geometrik izohlaydigan bo`lsak, teorema shartlari bajarilganda, y = f (x) funksiya grafigi AB yoyga tegishli hech bo`lmagan-da bitta (1-rasmda ikkita D va E) nuqta topiladiki, chiziqning shu nuq-tasiga o`tkazilgan urinma 0x abssissalar o`qiga parallel bo`ladi. Teo-remaning har bir sharti ahamiyatlidir, chunki ulardan biri bajarilmasa, (a; b) intervalda f (c) = 0 tenglikni qanoatlantiruvchi s nuqta topilmasli-gi mumkin. Masalan, 2-rasmda grafigi keltirilgan funksiya uchun uzluk-sizlik sharti bajarilmagan, a1 nuqta uning uzilish nuqtasi. 3-rasmda tasvirlangan funksiya uchun esa uning differensiallanuv-chanlik sharti bajarilmagan, a2 nuqtada funksiya hosilaga ega emas. Egri chiziqlarga tegishli va (a; b) interval doirasida urinmalari 0x o`qiga pa-rallel bo`ladigan biror-bir nuqta mavjud emas. Lagranj teoremasi: y = f (x) funksiya [a; b] kesmada aniqlangan va uzluksiz bo`lib, (a; b) intervalda differensiallanuvchi bo`lsa, u holda (a; b) intervalga tegishli kamida bitta s nuqta topiladiki, f (b) – f (a) = f (c) · (b–a) munosabat o`rinli bo`ladi. 1 - rasm. 2 - rasm. 3 - rasm. Lagranj teoremasida Roll teoremasidagidek, funksiyaning [a; b] kes-maning chetki nuqtalarida teng qiymatlarga erishishi talab qilinmaydi. Teoremadan xususiy f (a) = f (b) holda, f (c) = 0 ekanligi kelib chiqadi, shu ma`noda Lagranj teoremasi Roll teoremasining umumlashmasi hi-soblanadi. Teoremani geometrik izohlaydigan bo`lsak, uning har bir sharti o`rinli bo`lganda, y = f (x) funksiya grafigi AB yoyga tegishli hech bo`l-maganda bitta (4-rasmda ikkita D va E) nuqta topiladiki, chiziqning shu nuqtasiga o`tkazilgan urinma AB vatarga parallel bo`ladi. 4-rasm. Agar b = a + Δx almashtirish kiritsak, c nuqtani c = a + θ(b –a) = = a + θΔx (θ є (0; 1) ) ko`rinishda ifodalash mumkin. Almashtirishlar e`tiborga olinsa, Lagranj formulasi f (a + Δx) – f (a) = f (a + θΔx)Δx shaklda yoziladi va Lagranjning chekli orttirmalar formulasi deyiladi. Download 194.5 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling