Mustaqil ish Mavzu: Funksiya tushunchasi. Funksiyani aniqlanish sohasi va qiymatlar to’plami
Funksiyaning uzluksizligi va uning xossalari
Download 124.36 Kb.
|
Mustaqil ish Mavzu Funksiya tushunchasi. Funksiyani aniqlanish
- Bu sahifa navigatsiya:
- Uzluksiz funksiyalar xossalari. To’plamda uzluksizlik
2. Funksiyaning uzluksizligi va uning xossalari
y = f (M) = f (x1; x2; …; xn) funksiya V Rn to’plamda aniqlangan bo’lib, nuqta V to’plamning quyuqlanish nuqtasi va M0 є V bo’lsin. Funksiyaning nuqtada uzluksizligini, funksiya limitini ta’riflagan kabi, ikki teng kuchli ta’riflardan biri orqali aniqlash mumkin. Har bir hadi V to’plamga tegishli va uning M0 quyuqlanish nuqtasiga yaqinlashuvchi har qanday M1, M2, …, Mk, … nuqtalar ketma-ketligi uchun, mos funksiya qiymatlari f (M1), f (M2), …, f (Mk), … sonli ketma-ketligi f (M0) songa intilsa, u holda f (M) funksiya M0 nuqtada uzluksiz deyiladi. Har qanday oldindan tayinlanadigan ε > 0 son uchun M0 nuqtaning shunday bir δ atrofi Sδ(M0) ni ko’rsatish mumkin bo’lsaki, barcha M є Sδ(M0) ∩ V nuqtalar uchun |f (M) - f (M0) | < ε tengsizlik bajarilsa, f (M) funksiya M0 nuqtada uzluksiz deyiladi. y = f (M) funksiyaning M0 nuqtada uzluksizligi ning mavjudligini va uning funksiyaning M0 nuqtada erishadigan qiymati f (M0) ga tengligini anglatadi, ya’ni . shart shartga teng kuchli ekanligini e’tiborga olsak, argumentlar orttirmalari deb ataladigan , , …, almashtirishlar va ularga mos funksiyaning M0 nuqtadagi orttirmasi deyiladigan f (M) - f (M0) = Δf (M0) almashtirish kiritsak, shartlar ko’rinishda yoziladi. Bu esa, funksiyaning nuqtada uzluksizligi, shu nuqtada barcha argumentlarning cheksiz kichik orttirmalariga funksiya-ning ham cheksiz kichik orttirmasi mos kelishini anglatadi. Xususiy holda, yuqorida keltirilgan ta’riflarni bir o’zgaruvchili funksiya uchun bayon qilishda M ni x bilan almashtirish kifoya qiladi. Masalan: 1) y = cos x funksiya har bir x0 є R1 nuqtada uzluksiz, chunki Uzluksiz funksiyalar xossalari. To’plamda uzluksizlik Nuqtada uzluksiz funksiyalar quyidagi xossalar bilan xarakterlаnadi: 1. f (M) va g(M) funksiyalar M0 nuqtada uzluksiz bo’lsa, u holda M0 nuqtada quyidagi funksiyalar ham uzluksiz bo’ladi: a) ; b) (k – o’zgarmas); c) d) . 2. Agar f (M) funksiya V to’plamda aniqlangan bo’lib, M0 є V nuqtada uzluksiz va f (M0) > 0 (f (M0) < 0) bo’lsa, u holda M0 nuqtaning shunday bir δ atrofi Sδ(M0) mavjudki, barcha M є Sδ(M0) ∩ V nuqtalar uchun f (M) > 0 (f (M) < 0) tengsizlik o’rinli bo’ladi. To’plamning har bir nuqtasida uzluksiz funksiyaga to’plamda uzluksiz funksiya deyiladi. To’plamda uzluksiz funksiyalar esa quyidagi xossalarga ega: 1. Agar f (M) funksiya ixcham (chegaralangan va yopiq) V to’plamda uzluksiz bo’lsa, u holda f (M) funksiya V to’plamda chegaralangandir. 2. Agar f (M) funksiya ixcham V to’plamda uzluksiz bo’lsa, u holda f (M) funksiya V to’plamda o’zining eng katta va eng kichik qiymatlariga erishadi. Bir o’zgaruvchili funksiya uchun yuqorida qayd qilingan xossalardan tashqari, qo’shimcha quyidagi xossa o’rinli: 3 . Agar f (x) funksiya [a; b] kesmada uzluksiz va kesmaning chetki nuqtalarida turli ishorali qiymatlarga erishsa (f (a) · f (b) < 0), u holda (a; b) intervalga tegishli kamida bitta c nuqta topiladiki, f (c) = 0 tenglik bajariladi (1-rasm). 1-rasm. Download 124.36 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling