Teorema 1.2. Chekli grafda toq darajali uchlar soni juft sonda bo’ladi.
Agar grafning barcha uchlari bir xil –darajaga ega bo’lsa, u holda bunday graf darajali regulyar graf deb ataladi: .
Regulyar graflarga misol sifatida beshta muntazam ko’pyoqlar: tetraedr, kub, oktaedr, dodokaedr va ikosaedrlarni keltirish mumkin. Ma’lumki, regulyar grafning har bir uchidan bir hil sondagi qirralar chiqadi, demak (1.4) formulaga ko’ra bo’ladi, bu erda uchlar soni. Demak, darajali ta uchga ega regulyar grafda ta qirra bo’ladi. Bunda agar, toq bo’lsa, juft sonda ishtirok etadi. Chunki, va uchlarni tutashtiruvchi bitta qirra ham uchda ham uchda hisoblanadi.
Masalan. Tetraedrni olaylik. Unda lokal darajasi 3(toq)ga teng, undagi uchlar soni 4 ga teng. U holda qirralar soni . Oktaedrda lokal darajasi 4 ga, uchlar soni 6 ga teng. U holda qirralar soni ga teng bo’ladi.
Do'stlaringiz bilan baham: |