Nanotechnology in Solar Energy Conversion


Download 476.47 Kb.
Pdf ko'rish
Sana29.11.2020
Hajmi476.47 Kb.
#155561
Bog'liq
7-Nanotechnology


Nanotechnology in

Solar Energy Conversion

David F. Kelley

University of California, Merced



Energy production and use in the United States

How much energy do we use?     

How do we use it?    Where do we get it?


Total energy usage

(the situation isn’t getting any better)



World energy consumption

0

1



2

3

4



5

6

7



8

9

10



1850

1875


1900

1925


1950

1975


2000

year

all


oil

coal


gas

biomass


nuclear

Hydro


geothermy

sun; wind & other



Economics of solar energy

cost of production, ¢ per kW-hr  (U.S. in 2002)



0

5

10

15

20

25

Coal

Gas

Oil

Wind

Nuclear

Solar

Cost

1950

1960


1970

1980


1990

2000


5

10

15



20

25

Efficiency (%)



Year

crystalline Si

amorphous Si

nano TiO


2

CIS/CIGS


CdTe

Efficiency of Photovoltaic Devices



Bulk semiconductor photovoltaics

„

Existing photovoltaics are simple, relatively efficient, but are expensive.



„

Charge separation occurs in the bulk (not at an interface) and is driven by 

the local electric potential gradient. 

„

Efficient charge collection requires very pure materials. (Avoid



recombination centers.)

Dye-sensitized solar cells

„

Light is absorbed by surface adsorbed dye (or nanoparticle) . 



„

Charge separation occurs at an interface. 

„

Charge migration occurs in a chemical potential (concentration) gradient.



N

N

-



O

O

-



O

O

3I



-

2e

-



2e

-

MLCT



Electron

injection

Ru

2+

I



3

-

TiO



2

cathode


Bulk heterojunction polymer solar cells

„

Light is absorbed primarily by the polymer



„

Charge separation at the polymer/fullerene interface

„

Hole transport through the polymer



„

Electron transport through the fullerene



Nanotechnology in solar energy conversion: 

Nanoparticle based solar cells

Application in “dye” sensitized or bulk heterojunction 

photovoltaics

Advantages:

„

More photostable than dyes



„

Tunable through quantum size effects (quantum 

confinement)

„

Not sensitive to impurities



„

Possible multiple exciton generation from excitation 

in the blue regions of the solar spectrum (reverse 

Auger process). Potentially very efficient.



Passive luminescent solar concentrators

„

Total internal reflection 



directs light to small, highly 

efficient PV. Two big 

technical problems: 

1) luminescence quantum 

yield

2) self absorption



„

Possible solution: two sizes of 

core/shell nanorods. 

„

Most photon absorption is by 



smaller (and more numerous) 

CdSe or CdTe nanorods. 

„

Energy transfer from smaller 



(blue absorbing) to larger 

(red emitting) nanorods. The 

spectral difference minimizes 

self-absorption. 

Polymer or glass film with aligned nanorods

Photo-


voltaic

ZnS


Larger bandgap shell passivates the core semiconductor.

CdTe/CdS/ZnS lattice matching results in highly 

luminescent core/shell semiconductor nanorods

CdS


CdTe

Energy 


transfer

Total


internal

reflection



CdTe

Download 476.47 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling