Remark 1. The system (3) coincides with the classical result for SOS model (see [2,5]) when , i.e.,
We have the following result:
Theorem 1. There is a bijection between the solutions of the system of nonlinear equations (3) and translation-invariant Gibbs measures.
References.
1. Georgii H.-O. Gibbs measures and phase transitions // W. de Gruyter. –1988.
2. Rozikov U. A. Gibbs measures on Cayley trees. // World scientific. – 2013.
3. Ganikhodjaev N., Akin H., Temir S. Potts model with two competing binary interactions.// Turk J. Math. –2007. Том 31. – С. 229-238.
4. Ganikhodjaev N.N., Pah C.H. ,Wahiddin M.R. An Ising model with three competing interactions on a Cayley tree.// Journal of Math. Phys. –2004. Том 45.– С. 3645-3658.
5. Rozikov U.A., Suhov Yu.M. Gibbs measures for SOS model on a Cayley tree.// Infin. Dimens. Anal. Quantum Probab. Relat. Top. –2006 Том 9. № 3. – С. 471-488.
Do'stlaringiz bilan baham: |