O‘rin almashtirishlar uchun


Download 14.34 Kb.
Sana21.01.2023
Hajmi14.34 Kb.
#1107367
Bog'liq
2-Amaliy Algebradan


2. Quyidagi α va β o‘rin almashtirishlar uchun α ◦ β ◦ α1 ifodani toping: • α = (1 2 5 7), β = (2 4 6) ∈ S7.
α = (1 3 5 7), β = (2 4 8) (1 3 6) ∈ S8.
α = (1 3) (5 8), β = (2 3 6 7) ∈ S8.
α = (2 5 9) (1 3 6), β = (1 5 7) (2 4 6 9) ∈ S9.
3. (1 3 5 7) va (2 3 6 8) ∈ S8 sikllar uchun α ◦ (1 3 5 7) ◦ α1 = (2 3 6 8) tenglikni qanoatlantiruvchi α o‘rin almashtirishni toping.
4. Quyidagi elementlarning tartiblarini aniqlang: (1 2 3) (4 5) ∈ S5.
• (1 2 4 3) (5 6) ∈ S6.
• (1 7 4 3) (2 6 5) ∈ S7. • (1 2 4 3) (2 6 5) ∈ S6. • (1 2 7) (1 3 5) ∈ S7.
5. Agar σ ∈ Sn o‘rin almashtirish o‘zaro kesishmaydigan sikllar ko‘paymasi ko‘rinishida
σ = σ1 ◦ σ2 ◦ · · · ◦ σk
kabi ifodalangan bo‘lib, ord(σi) = ni, i ∈ {1, 2, . . . , k} bo‘lsa, u holda
ord(σ) = EKUB(n1, n2, . . . , nk)
ekanligini isbotlang.
6. (1 2 . . . n − 1 n)1 = (n n − 1 . . . 2 1) tenglikni isbotlang.
7. α = (a1 a2 . . . ak) ∈ Sn sikl berilgan bo‘lsin. U holda quyidagi tenglikni isbotlang:
. S4 gruppaning tartibi ikkiga teng bo‘lgan barcha elementlarini toping. 9. S4 gruppaning tartibi uchga teng bo‘lgan barcha elementlarini toping.
10. A4 gruppaning barcha elementlarini sikllar ko‘paytmasi shaklida yozing.
28
Ixtiyoriy α, β ∈ Sn o‘rin almashtirishlar uchun α1◦β1◦α◦β ∈ An ekanligini
isbotlang.
12. |An| = n2! tenglikni isbotlang.
13. Sn simmetrik gruppada uzunligi r ga teng bo‘lgan turli xil sikllar soni 1r (n−n!r)! ga teng bo‘lishini isbotlang.
14. σ ∈ Sn, n ≥ 2 siklning uzunligi k ga teng bo‘lishi uchun, ord(σ) = k bo‘lishi zarur va yetarli ekanligini isbotlang.
Download 14.34 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling