O‘rin almashtirishlar uchun
Download 14.34 Kb.
|
2-Amaliy Algebradan
2. Quyidagi α va β o‘rin almashtirishlar uchun α ◦ β ◦ α−1 ifodani toping: • α = (1 2 5 7), β = (2 4 6) ∈ S7. • α = (1 3 5 7), β = (2 4 8) ◦ (1 3 6) ∈ S8. • α = (1 3) ◦ (5 8), β = (2 3 6 7) ∈ S8. • α = (2 5 9) ◦ (1 3 6), β = (1 5 7) ◦ (2 4 6 9) ∈ S9. 3. (1 3 5 7) va (2 3 6 8) ∈ S8 sikllar uchun α ◦ (1 3 5 7) ◦ α−1 = (2 3 6 8) tenglikni qanoatlantiruvchi α o‘rin almashtirishni toping. 4. Quyidagi elementlarning tartiblarini aniqlang: • (1 2 3) ◦ (4 5) ∈ S5. • (1 2 4 3) ◦ (5 6) ∈ S6. • (1 7 4 3) ◦ (2 6 5) ∈ S7. • (1 2 4 3) ◦ (2 6 5) ∈ S6. • (1 2 7) ◦ (1 3 5) ∈ S7. 5. Agar σ ∈ Sn o‘rin almashtirish o‘zaro kesishmaydigan sikllar ko‘paymasi ko‘rinishida σ = σ1 ◦ σ2 ◦ · · · ◦ σk kabi ifodalangan bo‘lib, ord(σi) = ni, i ∈ {1, 2, . . . , k} bo‘lsa, u holda ord(σ) = EKUB(n1, n2, . . . , nk) ekanligini isbotlang. 6. (1 2 . . . n − 1 n)−1 = (n n − 1 . . . 2 1) tenglikni isbotlang. 7. α = (a1 a2 . . . ak) ∈ Sn sikl berilgan bo‘lsin. U holda quyidagi tenglikni isbotlang: . S4 gruppaning tartibi ikkiga teng bo‘lgan barcha elementlarini toping. 9. S4 gruppaning tartibi uchga teng bo‘lgan barcha elementlarini toping. 10. A4 gruppaning barcha elementlarini sikllar ko‘paytmasi shaklida yozing. 28 Ixtiyoriy α, β ∈ Sn o‘rin almashtirishlar uchun α−1◦β−1◦α◦β ∈ An ekanligini isbotlang. 12. |An| = 13. Sn simmetrik gruppada uzunligi r ga teng bo‘lgan turli xil sikllar soni 1r (n−n!r)! ga teng bo‘lishini isbotlang. 14. σ ∈ Sn, n ≥ 2 siklning uzunligi k ga teng bo‘lishi uchun, ord(σ) = k bo‘lishi zarur va yetarli ekanligini isbotlang. Download 14.34 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling