Основные виды химической связи в материалах Краткая история развития представлений
Download 0.8 Mb.
|
2. КРИСТАЛЛОХИМИЯ
- Bu sahifa navigatsiya:
- Полярность связей и молекул
Свойства ковалентной связи
Ковалентная связь обладает рядом важных свойств. К их числу относятся: насыщаемость и направленность. НАСЫЩАЕМОСТЬ — характерное свойство ковалентной связи. Она проявляется в способности атомов образовывать ограниченное число ковалентных связей. Это связано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной химической связи. Данное свойство определяет состав молекулярных химических соединений. Так, при взаимодействии атомов водорода образуется молекула Н2, а не Н3. С точки зрения МВС третий атом водорода не может присоединиться, так как спин его электрона окажется параллельным спину одного из спаренных электронов в молекуле. Способность к образованию того или иного числа ковалентных связей у атомов различных элементов ограничивается получением максимального числа неспаренных валентных электронов. НАПРАВЛЕННОСТЬ — свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечивающей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее прочная химическая связь. Полярность связей и молекул В молекулах положительные заряды ядер скомпенсированы отрицательными зарядами электронов. Однако положительные и отрицательные заряды могут быть пространственно разделены. Предположим, что молекула состоит из атомов разных элементов (НС1, СО и т. д.). В этом случае электроны смещены к атому с большей электроотрицательностью и центры тяжести положительных и отрицательных зарядов не совпадают, образуется электрический диполь — система из двух равных по величине и противоположных по знаку зарядов q, находящихся на расстоянии l, называемом длиной диполя. Длина диполя — векторная величина. Ее направление условно принято от отрицательного заряда к положительному. Такие молекулы называют полярными молекулами или диполями. Полярность молекулы тем больше, чем больше абсолютная величина заряда и длина диполя. Мерой полярности служит произведение q . l, называемое электрическим моментом диполя μ: μ = q . l. Единицей измерения μ служит Дебай (Д). 1 Д = 3,3 . 10 -30 Кл . м. В молекулах, состоящих из двух одинаковых атомов μ = 0. Их называют неполярными. Если такая частица попадает в электрическое поле, то в ней под действием поля произойдет поляризация — смещение центров тяжести положительных и отрицательных зарядов. В частице возникает электрический момент диполя, называемый наведенным диполем. Дипольный момент двухатомной молекулы АВ можно отождествить с дипольным моментом связи А—В в ней. Если общая электронная пара смещена к одному из атомов, то электрический момент диполя связи не равен нулю. Связь в этом случае называется полярной ковалентной связью. Если электронная пара симметрично расположена относительно атомов, то связь называется неполярной. В многоатомной молекуле определенный электрический момент диполя можно приписать каждой связи. Тогда электрический момент диполя молекулы может быть представлен как векторная сумма электрических моментов диполя отдельных связей. Существование или отсутствие момента диполя у молекулы связано с ее симметрией. Молекулы, имеющие симметричное строение, неполярны (μ = 0). К ним относятся двухатомные молекулы с одинаковыми атомами (Н2, С12 и др.), молекула бензола, молекулы с полярными связями BF3, A1F3, CO2, ВеС12 и др. Электрический момент диполя молекулы является важным молекулярным параметром. Знание величины μ может указать на геометрическую структуру молекулы. Так, например, полярность молекулы воды указывает на ее угловую структуру, а отсутствие момента диполя СО2 — на ее линейность. Download 0.8 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling