Oxirgi raqami juft son yoki 0 soni bilan tugaydigan sonlar ikkiga qoldiqsiz bo’linadi


Download 17.33 Kb.
Sana05.01.2022
Hajmi17.33 Kb.
#203108
Bog'liq
test Taymanova E. MOM-303


  1. “Oxirgi raqami juft son yoki 0 soni bilan tugaydigan sonlar ikkiga qoldiqsiz bo’linadi.”- mulohazaning mulohazaviy formulasini ko’rsating.

  1. (A

  2. (A

  3. (A

  4. (A

  1. “Agar kamayuvchi va ayriluvchi sonlar ma’lum bir songa bo’linsa, ayirma ham shu songa bo’linadi.”- mulohazaning mulohazaviy formulasini ko’rsating.

  1. A

  2. A

  3. A

  4. A

  1. “Faqat o’ziga va birga bo’linadigan natural sonlarga tub sonlar deyiladi.”- mulohazaning mulohazaviy formulasini ko’rsating.

  1. (A

  2. (A

  3. (A

  4. A

  1. R (x): “x-tub son”

Q(x): “x-biror sonning kubi” predikatlari berilgan bo’lsin. X=1, 4, 8 qiymatlarni qabul qilsa, quyidagilardan qaysi biri faqat rost qiymatga ega bo’ladi?

  1. ⎤R (1), ⎤R (8), R (1) ∨Q (1), R(1)⇒Q(1), R (8) ∨Q (8), R(8)⇒Q(8)

  2. ⎤R (1), ⎤R (8), R (1) ∧Q (1), R(1)⇔Q(1), R (8) ∧Q (8), R(8)⇔Q(8)

  3. ⎤R (1), ⎤R (8), R (1) ∧Q (1), R(1)⇒Q(1), R (8) ∨Q (8), R(8)⇒Q(8)

  4. ⎤R (1), ⎤R (4), R (1) ∨Q (4), R(1)⇒Q(1), R (8) ∨Q (4), R(8)⇒Q(8)

  1. R (x): “x-tub son”

Q(x): “x-biror sonning kubi” predikatlari berilgan bo’lsin. X=1, 4, 8 qiymatlarni qabul qilsa, quyidagilardan qaysi biri faqat yolg’on qiymatga ega bo’ladi?

  1. ⎤R (1), ⎤R (8), R (1) ∧Q (1), R(1)⇔Q(1), R (8) ∧Q (8), R(8)⇔Q(8)

  2. ⎤R (1), ⎤R (8), R (1) ∧Q (1), R(1)⇒Q(1), R (8) ∨Q (8), R(8)⇒Q(8)

  3. ⎤R (1), ⎤R (4), R (1) ∨Q (4), R(1)⇒Q(1), R (8) ∨Q (4), R(8)⇒Q(8)

  4. ⎤R (1), ⎤R (8), R (1) ∨Q (1), R(1)⇒Q(1), R (8) ∨Q (8), R(8)⇒Q(8)

  1. R (x): “x-juft son” va x∈N bo’lsa, ∀x R(x) ni mulohazaga aylantiring.

  1. Ixtiyoriy x natural son juft sondir.

  2. Shunday x natural son topiladiki, ular juft son bo’ladi.

  3. Ixtiyoriy x natural son juft son emas.

  4. Ixtiyoriy x natural son juft son bo’ladi yoki bo’lmaydi/

  1. R(x, y): “” (∀x,y∈N) predikatni kvantorlardan foydalanib, rost mulohazaga aylantiring.

  1. ∀x, ∃y )

  2. ∀x, ∃y )

  3. ∀x, ∀y )

  4. ∃x, ∃y )

  1. R(x, y): “” (∀x,y∈N) predikatni kvantorlardan foydalanib, yolg’on mulohazaga aylantiring.

  1. ∀x, ∀y )

  2. ∀x, ∃y )

  3. ∀x, ∃y )

  4. ∃x, ∃y )

  1. R(x, y): “ (∀x,y∈N) bo’lsa, ∃x, ∀y ) mulohazaga aylantiring va qirmatini aniqlang.

  1. Shunday natural sonlarning kvadrati mavjudki, unga ixtiyoriy natural sonni qo’shsak, yig’indi 25dan kata bo’ladi.-1

  2. Ixtiyoriy natural sonlarning kvadrati mavjudki, unga ixtiyoriy natural sonni qo’shsak, yig’indi 25dan kata bo’ladi.-0

  3. Shunday natural sonlarning kvadrati mavjudki, unga shunday natural sonni qo’shsak, yig’indi 25dan kata bo’ladi.-0

  4. Ixtiyoriy natural sonlarning kvadrati mavjudki, unga shunday natural sonni qo’shsak, yig’indi 25dan kata bo’ladi.-1

  1. R(x): “”, x∈Z va Q(y): predikatlar berilgan. Quydagilarning qaysi biri faqat rost qiymat qabul qiladi.

  1. ∃x(⎤R(x)), ∀y Q(y)

  2. ∃x(⎤R(x)), ∃y(⎤Q(y))

  3. ∃x(⎤R(x)), ∀y Q(y)

  4. ∀x R(x), ∃y(⎤Q(y))


Download 17.33 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling