Paskal uchburchagi haqida ma’lumotlar N. Ahmedova qdpi dotsenti Abduxalimova Moxira qdpi bt yo‘nalishi talabasi
Download 66,1 Kb.
|
Paskal uchburchagi haqida.talabalar anjumaniga
- Bu sahifa navigatsiya:
- Paskal uchburchagi
Paskal uchburchagi haqida ma’lumotlar N.Ahmedova QDPI dotsenti Abduxalimova Moxira QDPI BT yo‘nalishi talabasi Agar m ta elementdan n tadan tuzish mumkin bo‘lgan barcha o‘rinlashtirishlarni bir – birlaridan, eng kamida bir element bilan farq qiladiganlarini tanlab olsak, u holda gruppalar deb aytilgan birlashmalarni hosil qilamiz. Masalan, to‘rt element a, b, c va d dan 3 tadan olib tuzilgan gruppalar bunday bo‘ladi: abc, abd, acd, bcd Agar bu gruppalarning har birida mumkin bo‘lgan barcha o‘rin almashtirishlarni qilsak, to‘rt elementdan 3 talab mumkin bo‘lgan barcha o‘rinlashtirishlarni hosil qilamiz:
Bunday o‘rinlashtirishlarning soni 6·4=24 bo‘ladi. Shunday qilib m ta elementdan n tadan olib tuzilgan barcha o‘rinlashtirishlar soni m elementdan n tadan olib tuzilgan barcha gruppalar soni bilan n ta elementdan tuzish mumkin bo‘lgan barcha o‘rin almashtirishlar sonining ko‘paytmasiga teng, ya’ni: bunda Berilgan ta elementdan tadan gruppalashlar soni
1- jadval Bu jadvalda gruppalashlar sonining quyidagi xossalarini kuzatish mumkin: har bir qatorning chetlarida birlar joylashgan (bu tasdiq har bir qatordagi ikkinchi qatordan boshlab har bir qatordagi birlardan tashqari ixtiyoriy son bu qatordan yuqorida joylashgan qatordagi biri shu son ustida, ikkinchisi esa undan chapda joylashgan ikkita gruppalashlar sonining yig‘indisiga teng ( har bir qatordagi Ta’rif sifatida 1- shakldagi sonlar jadvali Paskal uchburchagi deb ataladi. Bu jadval arifmetik uchburchak nomi bilan ham yuritiladi. Uning Paskal nomi bilan atalishiga qaramasdan, bunday sonlar jadvali juda qadimdan dunyoning turli mintaqalarida, jumladan, sharq mamlakatlarida ham ma’lum bo‘lgan. Masalan, Erondagi Tus shahrida (hozirgi Mashhadda) yashab ijod qilgan Nosir at-Tusiy1 XIII asrda bu jadvaldan foydalanib, berilgan ikkita son yig‘indisining natural darajasini hisoblash usulini o‘zining ilmiy ishlarida keltirgan bo‘lsa, g‘arbda Al-Kashi nomi bilan mashhur Samarqandlik olim Ali Qushchi2 butun sonning istalgan natural ko‘rsatkichli arifmetik ildizi qiymatini taqribiy hisoblashda bu jadvaldan foydalana bilganligi haqida ma’lumotlar bor. Keyinchalik G‘arbiy Yevropada bu sonlar uchburchagi haqida M. Shtifel3 arifmetika bo‘yicha qo‘llanmalarida yozgan va u ham butun sondan istalgan natural ko‘rsatkichli arifmetik ildizning taqribiy qiymatini hisoblashda bu uchburchakdan foydalana bilgan. 1556 yilda bu sonlar jadvali bilan N. Tartalya4, keyinroq logarifmik lineyka ijodkori U. Otred5 (1631 yil) ham shug‘ullanganlar. 1654 yilga kelib B. Paskal o‘zining “Arifmetik uchburchak haqidagi traktat” nomli asarida bu sonlar jadvali haqidagi ma’lumotlarni e’lon qildi. Paskal uchburchagidagi qatorlar istalgancha davom ettirilishi mumkin. Shunisi qiziqki, Paskal uchburchagi yordamida istalgan ta elementdan tadan gruppalashlar sonini faqat qo‘shish amali yordamida hosil qilish mumkin Bu amal Paskal uchburchagi ko‘plab ajoyib xossalarga ega. B. Paskal yuqorida zikr etilgan traktatda: “Bu xossalarning haqiqatdan ham bitmas-tuganmasligi naqadar ajoyibdir” deb yozgan edi. 1 At-Tusiy (Nosir ad-Din-Muhammad ibn Muhammad ibn-al-Hasan, 1201-1274) – Eron astronomi va matematigi. 2 Ali Qushchi (Jamshid ibn Ma’sud, tug‘ilgan yili noma’lum–taxminan 1436 yoki 1437 yilda vafot etgan) – o‘zbek matematigi va astronomi, 1420-30 yillarda Samarqandda Mirzo Ulug‘bek observatoriyasida ishlagan. 3 Shtifel Mixel (Michel, 1487-1567) – olmon matematigi. 4 Tartalya Nikkolo (Tartalia Nic-colo, 1499 yil atrofida tug‘ilgan-1557) – italyan matematigi va mexanigi. 5 Otred Uilyam (Outred William, 1574-1660) – ingliz matematigi. Download 66,1 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling