План Термодинамические свойства пара и газа. Влажность пара. Паросодержание жидкостно-паровой смеси
Download 20.98 Kb.
|
- Bu sahifa navigatsiya:
- Влажность пара
План 1.Термодинамические свойства пара и газа. 2.Влажность пара . 3.Паросодержание жидкостно-паровой смеси. Термодинамические свойства пара и газа различны, поэтому свойства парогазовой смеси зависят от ее количественного состава. Если же в смеси содержится значительное количество пара в состоянии, близком к сжижению, то применение к такой смеси законов идеальных газов приводит к определенной погрешности и тем большей, чем больше содержится пара в парогазовой смеси. Термодинамические свойства пара и газа различны, поэтому свойства парогазовой смеси зависят от ее количественного состава. При небольших содержаниях пара или небольших давлениях ненасыщенный газ обладает свойствами, близкими к свойствам идеального газа, законы которого могут быть применены в этом случае с достаточно высокой степенью точности. Если же в смеси содержится значительное количество пара в состоянии, близком к сжижению, то применение к такой смеси законов идеальных газов приводит к определенной погрешности и тем большей, чем больше содержится пара в парогазовой смеси. Исследуютсятермодинамические свойства паров, жидкостей, твердых тел. Появляются десятки уравнений состояния вещества, изучаются фазовые равновесия и фазовые превращения, ведется исследование электрических и магнитных процессов лучистой энергии, химических реакций, термодинамики реальных тел. Для жидкостей - состояние реальной жидкости при стандартном давлении; иногда приводяттермодинамические свойства гипотетического пара этой жидкости в состоянии идеального газа и при стандартном давлении. Влажность пара — отношение содержащейся в насыщенном паре капельной жидкости к общему количеству смеси фаз Y=Gf/Gf+Gs где — масса жидкой фазы, — масса сухого пара. Аналогично определяетсясухость пара X=Gs/Gf+Gs=1-yОбе величины могут, очевидно, принимать значения от 0 до 1. В расширенном понимании сухость пара, или паросодержание жидкостно-паровой смеси, можно определить через энтальпию среды и энтальпии насыщенной жидкости и сухого насыщенного пара как Реальные газы отличаются от идеальных газов тем, что молекулы этих газов имеют объемы и связаны между собой силами взаимодействия, которые уменьшаются с увеличением расстояния между молекулами. При практических расчетах различных свойств реальных газов наряду с уравнением состояния применяется отношение P·?/(R·T) = ?. Так как для идеальных газов при любых условиях P· ? = R·T, то для этих газов ? = 1. Следовательно, величина коэффициента ?выражает отклонение свойств реального газа от свойств идеального. Величина ? для реальных газов в зависимости от давления и температуры может принимать значения больше или меньше единицы и только при малых давлениях и высоких температурах она практически равна единице. Тогда реальные газы можно рассматривать как идеальные. В связи с отличием свойств реального газа от свойств идеального газа нужно иметь новые уравнения состояния, которые связывали бы значения P, v, T и давали бы возможность рассчитывать некоторые свойства газов для разных условий. Были предложены различные уравнения состояния реальных газов, но ни одно из них не решает проблему для общего случая. Наиболее простое расчетное уравнение имеет вид: · ? = R·(1 - А/ ? - B/ ? 2), (1) где А и В - первый и второй (вириальные) коэффициенты, являющиеся функцией только температуры. При расчете свойств многих реальных газов уравнения такого типа получили большое распространение. Так, наиболее простым и качественно верно отображающим поведение реального газа, является уравнение, предложенное Ван-дер-Ваальсом: (P + a/ ? 2)·(? - b) = R·T (2), а, b - постоянные величины, первая учитывает силы взаимодействия, вторая учитывает размер молекул / ? 2 - (3) (3) характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами и называется внутренним давлением. Для жидких тел это давление имеет большие значения (например, для воды при 200С составляет 1050 МПа), а для газов из-за малых сил сцепления молекул оно очень мало. Поэтому внешнее давление, под которым находится жидкость, оказывает ничтожное влияние на её объем, и жидкость считают несжимаемой. В газах в виду малости значения a/ ? 2 внешнее давление легко изменяет их объем. Понятие термодинамического прцесса характеризует термодинамическую систему с точки зрения ее энергетического взаимодействия с окружающей средой. Термодинамическим процессом называется процесс изменения состояния термодинамического тела (системы), не находящегося в термодинамическом равновесии с внешней средой и не изолированный от нее. При этом наблюдается энергетическое взаимодействие между телом и окружающей средой, сопровождающееся изменением параметров тела. Строго говоря, только для процессов, происходящих очень медленно, с малыми отклонениями промежуточных параметров (квазистатические равновесные процессы) можно воспользоваться уравнениями состояния, а сам процесс геометрически представить в виде непрерывной кривой на термодинамической поверхности. Графическое изображение действительных неравновесных процессов, протекающих с конечной скоростью, имеет условный характер. Понятие равновесности характеризует поведение параметров внутри и на границах тел при процессах, но не затрагивает превращения форм энергии и распределение ее в системе. Для характеристики процессов с точки зрения превращения и распределения энергии между всеми телами, участвующими в процессе, вводится понятие обратимости процессов. Обратимыми называются процессы, которые могут быть проведены в прямом и обратном направлениях таким образом, что все тела, участвующие в процессе, проходят через одни и те же промежуточные равновесные состояния (но в обратной последовательности), а после проведения прямого и обратного процессов все тела системы возвращаются в первоначальное состояние, и, следовательно, распределение энергии между ними оказывается прежним. Процессы, не отвечающие поставленным условиям, называются необратимыми. Все неравновесные процессы необратимы. Так, при неравенстве давления в рабочем теле и внешнего давления, рабочее тело расширяется или сжимается, в результате возникают вихревые движения, которые со временем успокаиваются, а их энергия переходит в энергию теплового движения частиц. В этом случае наблюдается переход механической работы в теплоту, в результате чего для возврата системы в первоначальное состояние потребуется дополнительное количество механической работы. При отсутствии термического равновесия процесс также необратим. Теплота самопроизвольно переходит от тела, более нагретого к телу менее нагретому, и обратный переход теплоты возможен только при наличии дополнительного источника теплоты. Необратимость процессов подразделяется на: - внешнюю необратимость, вызванную разностью температур при теплообмене между телами; - внутреннюю необратимость, вызванную наличием трения. В прямом и обратном процессах в этом случае имеется работа, затрачиваемая на трение, она превращается в теплоту. Всякая необратимость связана с уменьшением возможной работы системы, эта потеря является мерой необратимости процесса. Процессы с полной потерей возможной работы называются предельно необратимыми. Примерами предельно-необратимых процессов могут служить: расширение газа в вакуум, дросселирование газов и паров, рассеяние теплоты горячего тела в окружающую среду и т.п. При термодинамических исследованиях процессов обычно не касаются внешней необратимости, обусловленной разностью температур при теплообмене, сами же процессы принимаются (естественно условно) внутренне равновесными. Такие процессы легко поддаются термодинамическому анализу, так как они могут изображаться графически в виде сплошных линий на диаграммах параметров состояния. Download 20.98 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling