Понятие алгоритма и меры его сложности. Временная и емкостная сложность алгоритмов
Временная и емкостная сложность алгоритмов
Download 457.32 Kb.
|
bibliofond 576614
2. Временная и емкостная сложность алгоритмовВ данном разделе рассмотрим две характеристики сложности алгоритмов - временная и емкостная. Единицы измерения сложности будем привязывать к классу архитектур наиболее распространенных ЭВМ. Временную сложность будем подсчитывать в исполняемых командах: количество арифметических операций, количество сравнений, пересылок (в зависимости от алгоритма). Емкостная сложность будет определяться количеством скалярных переменных, элементов массивов, элементов записей или просто количеством байт. Одно из свойств алгоритма - массовость. В общем случае количество операций и требуемая память зависят от исходных данных, т.е. являются функциями вектора X = (х1, х2, ..., хn) исходных данных. С точки зрения математического анализа сложности, сравнения алгоритмов, их классификации хотелось бы, чтобы функции сложности (x1, x2, ..., xn) выражались в виде формул с использованием обычных, элементарных математических функций. Тогда оказался бы доступнымбогатый арсенал средств классической математики. Но это не всегда возможно, так как исходные данные могут быть нечисловыми (графы, географические карты, строки символов, звуки и т. д.). Поэтому сложность алгоритма a рассматривается как функция от некоторого интегрированного числового параметра V, характеризующего исходные данные. Обозначим: Ta(V) - временная сложность алгоритма a; Sa(V) - емкостная сложность. Параметр V, характеризующий данные, называют иногда объемом данных или сложностью данных. Оба эти термина не совсем точны. Выбор параметра V зависит не только от вида данных, но и от вида алгоритма или от задачи, которую этот алгоритм решает. Рассмотрим два примера. Отыскание функций сложности алгоритмов важно как с прикладной, так и с теоретической точек зрения. В практике проектирования систем реального времени задача разработки программы формулируется так: отыскать такой алгоритм a, решающий задачу P, что Тa(X) < Tmax при X Î D, где D - область допустимых значений входных данных (задача с ограничением на временную сложность). В системах, где критерий качества связан с временем ожидания реакции компьютера (системы управления базами данных, системы автоматического перевода для естественных языков программы для игры в шахматы и другие) задача может быть поставлена так: отыскать среди всех алгоритмов, решающих задачу Р, такой алгоритм а, для которого функция Ta(X) будет принимать минимальные значения на выбранном подмножестве S значений исходных данных, XÎSÌD (задача минимизации временной сложности; дополнительно формулируются ограничения по емкостной сложности). Двойственная задача минимизации емкостной сложности при ограничениях на временную сложность возникает реже в силу архитектурных особенностей современных ЭВМ, поскольку запоминающие устройства разных уровней, входящие в состав машины, построены так, что программе может быть доступна очень большая, практически неограниченная область памяти - виртуальная память. Недостаточное количество основной памяти приводит лишь к некоторому замедлению работы из-за обменов с диском. Так как в любой момент времени программа работает лишь с двумя-тремя значениями и использование кэша и аппаратного просмотра команд программы вперед позволяет заблаговременно перенести с диска в основную память нужные значения, то можно констатировать, что минимизация емкостной сложности не является первоочередной задачей. Download 457.32 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling