Понятие алгоритма и меры его сложности. Временная и емкостная сложность алгоритмов
Download 457.32 Kb.
|
bibliofond 576614
6. Оптимизация алгоритмовПока компьютерные науки не накопили достаточно сведений для того, чтобы задача минимизации могла быть поставлена с обычной для математики определенностью. Этому мешает несколько факторов. Во-первых, сложно сформулировать критерий оптимизации, имеющий одновременно и бесспорное практическое значение и однозначно определенный в математическом плане. Например, можно поставить задачу минимизации числа команд машины Тьюринга - критерий, хорошо определенный математически; но совсем неясно его практическое значение, поскольку вряд ли реальная программа на реальном компьютере будет моделировать машину Тьюринга. Можно поставить задачу минимизации времени выполнения программы на реальной машине - ясный с практической точки зрения критерий. Однако невозможно будет решить задачу оптимизации математическими методами, так как время выполнения зависит (иногда значительно) от архитектуры ЭВМ, а архитектуру современных компьютеров не опишешь небольшим числом параметров. Важно также, что программа, работающая быстрее других на одном компьютере, может оказаться не самой быстрой на другом. Существуют даже специальные программы с общим названием benchmark, предназначенные для оценки архитектур. Во-вторых, не совсем ясно, что такое сложность задачи. Ее можно было бы определить как минимальную из сложностей алгоритмов, решающих эту задачу. Но существует ли алгоритм минимальной сложности (как убедиться, что найденный алгоритм действительно минимальный или, напротив, не минимальный)? Есть ли к чему стремиться? И насколько труден поиск этого минимума? Эти вопросы связаны с нижней оценкой сложности алгоритмов (а не верхней, как в предыдущих шагах) (5, стр. 89-92). Можно ли для рассматриваемой задачи доказать, что никакой решающий ее алгоритм не может быть проще этой нижней оценки? Возьмем известную задачу перемножения квадратных матриц. Приведен алгоритм сложности Тa(n) = 3n3 + n2. (8, стр. 199-203) Вероятно, это не лучший алгоритм, но какова оценка снизу? Результирующая матрица имеет n2 элементов. Для вычисления любого элемента нужна хотя бы одна операция однопроцессорной машины - два элемента за одну операцию найти нельзя. Для минимального алгоритма мы получаем неравенства n2 <= Ta, min(n) <= 3n3+n2 . Вряд ли n2 - хорошая нижняя оценка, но уже известно, что n3 нижней оценкой не является, так как найдены более быстрые алгоритмы (в частности, алгоритм Штрассена). (8, стр. 211) Существует несколько самостоятельных аспектов оптимизации программ, из которых выделим два: - оптимизация, связанная с выбором метода построения алгоритма; - оптимизация, связанная с выбором методов представления данных в программе. Первый вид оптимизации имеет глобальный характер и ведет к уменьшению порядка функции сложности - например, замена алгоритма с Тa(V) = O(FS) на алгоритм с Ta(V) = O(V4). Он зависит от того, как задача разбивается на подзадачи, насколько это разбиение свойственно самой задаче или является только искусственным приемом. Общим руководящим подходом здесь может быть последовательность действий, обратная анализу алгоритмов. При анализе по рекурсивному алгоритму строится уравнение, которое затем решается. При оптимизации реализуется цепочка: Формула, задающая желаемую сложность -> Соответствующее уравнение (одно из возможных) -> Метод разбиения задачи на подзадачи. Второй вид оптимизации, не меняя структуры программы в целом, ведет к экономии памяти и/или упрощению работы со структурами данных, повышению эффективности вспомогательных процедур, обеспечивающих "интерфейс" между прикладным уровнем (на котором мыслим в терминах высокоуровневых объектов - графов, матриц, текстов и т. д.) и машинным уровнем, поддерживающим простейшие типы данных (числа, символы, указатели). Результатом этого обычно является уменьшение коэффициентов при некоторых слагаемых в функции сложности (при удачной оптимизации - при наиболее значимом слагаемом), но порядок функции сложности остается тем же. (7, стр. 204) Оба вида оптимизации дополняют друг друга и могут применяться совместно. |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling