Понятие статистических методов прогнозирования. 1 Статистика: понятие


) изучить процесс применения статистических методов прогнозирования (на примере одного из конкретных методов)


Download 69.03 Kb.
bet2/2
Sana27.02.2023
Hajmi69.03 Kb.
#1234485
TuriРеферат
1   2
Bog'liq
bibliofond.ru 6632

3) изучить процесс применения статистических методов прогнозирования (на примере одного из конкретных методов).


Объектом исследования являются статистические методы прогнозирования.
Предметом исследования являются конкретные методы анализа статистических данных.
Структура работы: введение, две главы основной части (четыре параграфа), заключение, список использованной литературы.

Глава 1. Понятие статистических методов прогнозирования


.1 Статистика: понятие, содержание


Первая публикация по статистике - это "Книга чисел" в Библии, в Ветхом Завете, в которой рассказано о переписи военнообязанных, проведённой под руководством Моисея и Аарона. Впервые термин "статистика" мы находим в художественной литературе - в "Гамлете" Шекспира (1602 г., акт 5, сцена 2). Смысл этого слова у Шекспира - знать, придворные. По-видимому, оно происходит от латинского слова status, что в оригинале означает "состояние" или "политическое состояние". В течение следующих 400 лет термин "статистика" понимали и понимают по-разному. В литературе собрано более 200 определений этого термина, некоторые из которых приводятся ниже.


Вначале под статистикой понимали описание экономического и политического состояния государства или его части. Например, к 1792 г. относится определение: "статистика описывает состояние государства в настоящее время или в некоторый известный момент в прошлом". И в настоящее время деятельность государственных статистических служб вполне укладывается в это определение.
Однако постепенно термин "статистика" стал использоваться более широко. По Наполеону Бонапарту, "статистика - это бюджет вещей". Тем самым статистические методы были признаны полезными не только для административного управления, но и для применения на уровне отдельного предприятия. Согласно формулировке 1833 г., "цель статистики заключается в представлении фактов в наиболее сжатой форме". Приведем ещё два высказывания. Статистика состоит в наблюдении явлений, которые могут быть подсчитаны или выражены посредством чисел (1895). Статистика - это численное представление фактов из любой области исследования в их взаимосвязи (1909).
Сразу после возникновения теории вероятностей (Паскаль, Ферма, XVII век) вероятностные модели стали использоваться при обработке статистических данных. Например, изучалась частота рождения мальчиков и девочек, было установлено отличие вероятности рождения мальчика от 0,5, анализировались причины того, что в парижских приютах эта вероятность не та, что в самом Париже, и т.д. Имеется много публикаций по истории теории вероятностей с описанием раннего этапа развития статистических методов исследований.
В Х1Х веке заметный вклад в развитие практической статистики внёс бельгиец Кетле, на основе анализа большого числа реальных данных показавший устойчивость относительных статистических показателей, таких, как доля самоубийств среди всех смертей. Интересно, что основные идеи статистического приёмочного контроля и сертификации продукции обсуждались академиком Петербургской АН М.В. Остроградским (1801-1862) и применялись в российской армии ещё в середине Х1Х в. Статистические методы управления качеством и сертификации продукции сейчас весьма актуальны.
Современный этап развития статистических методов можно отсчитывать с 1900 г., когда англичанин К. Пирсон основал журнал "Biometrika". Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное (гауссово) распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.
Разработанную в первой трети ХХ в. теорию анализа данных называем параметрической статистикой, поскольку её основной объект изучения - это выборки из распределений, описываемых одним или небольшим числом параметров. Наиболее общим является семейство кривых Пирсона, задаваемых четырьмя параметрами. Как правило, нельзя указать каких-либо веских причин, по которым распределение результатов конкретных наблюдений должно входить в то или иное параметрическое семейство. Исключения хорошо известны: если вероятностная модель предусматривает суммирование независимых случайных величин, то сумму естественно описывать нормальным распределением; если же в модели рассматривается произведение таких величин, то итог, видимо, приближается логарифмически нормальным распределением, и т. д. Однако подобных моделей нет в подавляющем большинстве реальных ситуаций, и приближение реального распределения с помощью кривых из семейства Пирсона или его подсемейств - чисто формальная операция. Именно из таких соображений критиковал параметрическую статистику академик АН СССР С. Н. Бернштейн в 1927 г.. Однако эта теория и до сих пор продолжает использоваться значительной массой прикладников.
В ХХ в. статистику часто рассматривают прежде всего как самостоятельную научную дисциплину. Статистика есть совокупность методов и принципов, согласно которым проводится сбор, анализ, сравнение, представление и интерпретация числовых данных (1920-е гг.). В 1954 г. академик Б.В. Гнеденко дал следующее определение: "Статистика состоит из трёх разделов:
) сбор статистических сведений, то есть сведений, характеризующих отдельные единицы каких-либо массовых совокупностей;
) статистическое исследование полученных данных, заключающееся в выяснении тех закономерностей, которые могут быть установлены на основе данных массового наблюдения;
) разработка приёмов статистического наблюдения и анализа статистических данных. Последний раздел, собственно, и составляет содержание математической статистики".
Термин "статистика" употребляют ещё в двух смыслах.
Во-первых, в обиходе под "статистикой" часто понимают набор количественных данных о каком-либо явлении или процессе.
Во-вторых, статистикой называют функцию от результатов наблюдений, используемую для оценивания характеристик и параметров распределений и проверки гипотез.
Со временем результаты обработки статистических данных стали представлять в виде таблиц и диаграмм, как это сейчас делает Федеральная служба государственной статистики России (Росстат) РФ.
Структура современной статистики такова.
Прикладная статистика - методическая дисциплина, являющаяся центром статистики. При применении методов прикладной статистики к конкретным областям знаний и отраслям народного хозяйства получаем научно-практические дисциплины типа "статистика в промышленности", "статистика в медицине", "статистика в психологии" и др. С этой точки зрения эконометрика - это "статистические методы в экономике".
Математическая статистика играет роль математического фундамента для прикладной статистики.
К настоящему времени очевидно чётко выраженное размежевание этих двух научных направлений. Математическая статистика исходит из сформулированных в 1930-50 гг. постановок математических задач, происхождение которых связано с анализом статистических данных. Начиная с 70-х годов ХХ в. исследования по математической статистике посвящены обобщению и дальнейшему математическому изучению этих задач. Поток новых математических результатов (теорем) не ослабевает, но новые практические рекомендации по обработке статистических данных при этом не появляются. Можно сказать, что математическая статистика как научное направление замкнулась внутри себя.
Сам термин "прикладная статистика" возник как реакция на описанную выше тенденцию. Прикладная статистика нацелена на решение реальных задач. Поэтому в ней возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими методами, то есть путём доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.
Прикладная статистика включает в себя две внематематические области. Во-первых, методологию организации статистического исследования: как планировать исследование, как собирать данные, как подготавливать данные к обработке, как представлять результаты. Во-вторых, организацию компьютерной обработки данных, в том числе разработку и использование баз данных и электронных таблиц, статистических программных продуктов, например, диалоговых систем анализа данных.
Необходимо отметить, что между математической и прикладной статистикой имеется и с течением времени углубляется разрыв. Он проявляется, в частности, в том, что большинство методов, включенных в статистические пакеты программ, даже не упоминается в учебниках по математической статистике. В результате разрыва специалист по математической статистике оказывается зачастую беспомощным при обработке реальных данных, а пакеты программ применяют (что еще хуже - и разрабатывают) лица, не имеющие необходимой теоретической подготовки. Естественно, что они допускают разнообразные ошибки. Типовые ошибки при применении критериев согласия Колмогорова и омега-квадрат давно проанализированы в литературе.
Выделяется также аналитическая статистика - это процедуры оценки характеристик совокупности по данным выборок. Аналитическая статистика включает:
- методы анализа вариации и частотных распределений;
- вопросы теории и практики выборочного наблюдения;
методы и показатели оценки взаимосвязей признаков;
методологию статистического изучения динамики;
основные характеристики, виды и способы исчисления индексов.
Итак, статистика - наука, исследующая с количественной стороны в неразрывной связи с качественной массовые явления, к какой бы области они ни относились, но обладающие признаками совокупности. Прикладная статистика и математическая статистика - это две разные научные дисциплины. Курс математической статистики состоит в основном из доказательств теорем. В курсах прикладной статистики основное - методология анализа данных и алгоритмы расчётов, а теоремы приводятся как обоснования этих алгоритмов, доказательства же, как правило, опускаются.

1.2 Виды статистических методов прогнозирования


Статисти́ческие ме́тоды - методы анализа статистических данных. Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.


Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):
а) разработка и исследование методов общего назначения, без учета специфики области применения;
б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;
в) применение статистических методов и моделей для статистического анализа конкретных данных.
Кратко рассмотрим три только что выделенных вида научной и прикладной деятельности. По мере движения от а) к в) сужается широта области применения конкретного статистического метода, но при этом повышается его значение для анализа конкретной ситуации. Если работам вида а) соответствуют научные результаты, значимость которых оценивается по общенаучным критериям, то для работ вида в) основное - успешное решение конкретных задач той или иной области применения (техники и технологии, экономики, социологии, медицины и др.). Работы вида б) занимают промежуточное положение, поскольку, с одной стороны, теоретическое изучение свойств статистических методов и моделей, предназначенных для определенной области применения, может быть весьма сложным и математизированным, с другой - результаты представляют не всеобщий интерес, а лишь для некоторой группы специалистов. Можно сказать, что работы вида б) нацелены на решение типовых задач конкретной области применения.
Статистические методы анализа данных, относящиеся к группе а), обычно называют методами прикладной статистики. Таким образом, прикладная статистика - это наука о том, как обрабатывать данные произвольной природы, без учета их специфики.
Математическая основа прикладной статистики и статистических методов анализа данных в целом - это математическая наука, известная под названием "теория вероятностей и математическая статистика". Как уже было отмечено выше, прикладная статистика - другая область знаний, чем математическая статистика.
Описание вида данных и, при необходимости, механизма их порождения - начало любого статистического исследования. Отметим, что для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей, оставляя детерминированные методы экономической учебной дисциплине "Общая теория статистики".
Вряд ли возможно противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.
В простейшей ситуации статистические данные - это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.
При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат - числа, а часть - качественные (категоризованные) данные, то говорим о векторе разнотипных данных.
Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, - электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.
Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы - образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т. д.
Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных - числовые и нечисловые. Соответственно прикладная статистика разбивается на две части - числовую статистику и нечисловую статистику.
Числовые статистические данные - это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки - это (классические) законы больших чисел и центральные предельные теоремы.
Нечисловые статистические данные - это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т.д.
В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т.н. цензурированные данные, состоящие из набора чисел - продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.
Выделяют методы прикладной статистики, которые могут применяться во всех областях научных исследований и любых отраслях национальной экономики, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.
Опыт прогнозирования индекса инфляции и стоимости потребительской корзины накоплен в Институте высоких статистических технологий и эконометрики. При этом оказалось полезным преобразование (логарифмирование) переменной - текущего индекса инфляции. Характерно, что при стабильности условий точность прогнозирования оказывалась достаточно удовлетворительной - 10-15 %. Однако, если обратиться к истории, спрогнозированное на осень 1996 г. значительное повышение уровня цен не осуществилось. Дело в том, что руководство страны перешло к стратегии сдерживания роста потребительских цен путем массовой невыплаты зарплаты и пенсий. Условия изменились - и статистический прогноз оказался непригодным. Влияние решений руководства Москвы проявилось также в том, что в ноябре 1995 г. (перед парламентскими выборами) цены в Москве упали в среднем на 9,5%, хотя обычно для ноября характерен более быстрый рост цен, чем в другие месяцы года, кроме декабря и января.
Оценивание точности прогноза - необходимая часть процедуры квалифицированного прогнозирования. При этом обычно используют вероятностно-статистические модели восстановления зависимости, например, строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Так, в литературе предложены и изучены методы доверительного оценивания точки наложения (встречи) двух временных рядов и их применения для оценки динамики технического уровня собственной продукции и продукции конкурентов, представленной на мировом рынке.
Применяются также эвристические приемы, не основанные на какой-либо теории: метод скользящих средних, метод экспоненциального сглаживания.
Адаптивные методы прогнозирования позволяют оперативно корректировать прогнозы при появлении новых точек. Речь идет об адаптивных методах оценивания параметров моделей и об адаптивных методах непараметрического оценивания. Отметим, что с развитием вычислительных мощностей компьютеров проблема сокращения объемов вычисления теряет свое значение.
Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения - основной на настоящий момент эконометрический аппарат прогнозирования. Подчеркнем, что нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно. Однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной центральной предельной теореме теории вероятностей и эконометрической технологии линеаризации. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от 0 в непараметрической постановке, строить доверительные границы для прогноза.
Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Дело в том, что априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен, желательно его сократить, и крупное направление современных эконометрических исследований посвящено методам отбора "информативного множества признаков". Однако эта проблема пока еще окончательно не решена. Проявляются необычные эффекты. Так, в литературе установлено, что обычно используемые оценки степени полинома имеют геометрическое распределение. Перспективны непараметрические методы оценивания плотности вероятности и их применения для восстановления регрессионной зависимости произвольного вида. Наиболее общие постановки в этой области получены с помощью подходов статистики нечисловых данных.
К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса-Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах.
Для установления возможности применения асимптотических результатов при конечных (т.н. "малых") объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстреп-методов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.
Прогнозирование на основе данных, имеющих нечисловую природу, в частности, прогнозирование качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, в частности, определение и расчет нотны и рационального объема выборки, а также регрессионный анализ нечетких данных. Общая постановка регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи - дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем), давая единый подход к формально различным методам, полезна при программной реализации современных статистических методов прогнозирования.
Итак, статистические методы представляют собой совокупность методов обработки количественной информации об объекте прогнозирования, объединенной по принципу выявления содержащихся в ней математических закономерностей изменения характеристик данного объекта с целью получения прогнозных моделей.

Глава 2. Применение статистических методов прогнозирования


.1 Процесс прогнозирования, опирающийся на статистические методы


Процессы развития в обществе носят диалектический характер, который, в частности, проявляется в сочетании черт устойчивости и изменчивости этого развития. Соотношение этих черт, их удельный вес в характеристике развития за определенные хронологические интервалы весьма важны для социально-экономического прогнозирования. Так, если изучаемые и прогнозируемые процессы имеют достаточно длительную историю и накоплен материал, позволяющий вскрыть закономерность и тенденции в их развитии и взаимосвязях с другими явлениями, а сами процессы обладают большой инерционностью, то гипотеза о будущем развитии этих процессов в значительной мере, хотя и не исключительно, может базироваться на анализе прошлого. Инерционность в социально-экономических процессах проявляется двояким образом:


во-первых, как инерционность взаимосвязей, т.е. как сохранение в основных чертах механизма формирования явления (иначе говоря, сохранение зависимости, корреляции прогнозируемой переменной от совокупности переменных-аргументов);
во-вторых, как инерционность в развитии отдельных сторон процессов, т.е. как некоторая степень сохранения их характера - темпов, направления, колеблемости основных количественных показателей на протяжении сравнительно длительных хронологических отрезков.
Инерционность развития экономики страны связана с длительно воздействующими факторами, например, такими, как структура основных фондов, их возраст и эффективность, размеры инвестиций прошлых лет, степень устойчивости технологических взаимосвязей отраслей производства, исторически сложившаяся структура потребления и т.д. Следует также учесть, что научно-технический прогресс в основном материлизуется путем постепенного накапливания небольших улучшений, усовершенствований, новшеств, относительно медленным вытеснением старого. Новые факторы, пришедшие на смену старым, в свою очередь способны оказывать более или менее длительное инерционное воздействие.
По-видимому, степень инерционности зависит и от такого фактора, как размер или масштаб изучаемой системы или процесса. Если рассматривать производственную систему, то чем ниже ее уровень в иерархии "предприятие - отрасль - экономика", тем менее инерционными оказываются соответствующие характеристики. Последнее обстоятельство можно объяснить и тем, что влияние отдельного фактора (например, внедрение новой технологии) на низовом уровне часто оказывается доминирующим. На макроуровне показатели более устойчивы, поскольку на их значение оказывает воздействие уже гораздо большее число факторов. Изменение действия ряда из них (иногда оказывающих противоположное влияние) приводит к меньшей потере инерционности, чем на микроуровне. Инерционную тенденцию можно уподобить равнодействующей системе сил в механике. При большом числе составляющих изменение одной из них не окажет серьезного влияния на положение и размер равнодействующей в рамках всего хозяйства.
Опыт свидетельствует также и о том, что чем "моложе" изучаемая система (экономическое явление, процесс, отрасль) и соответственно чем меньше имелось времени для формирования более или менее устойчивых взаимосвязей и основных тенденций в ее развитии, тем меньшей инерционностью она обладает.
Таким образом, при значительной инерционности рассматриваемых экономических процессов и взаимосвязей и сохранении в будущем важных внешних причин и условий их развития правомерно с достаточной степенью вероятности ожидать сохранения уже выявившихся черт и характера этого процесса. Причем наличие инерционности нисколько не означает, что явление в своем развитии будет жестко следовать уже наметившейся тенденции. Несомненно, различные факторы будут в большей или меньшей степени воздействовать на явления, приводя к отклонениям от тенденции. В этих условиях становится целесообразным применять разнообразные методы обнаружения и экстраполяции преобладающей тенденции развития анализируемого объекта, использовать для прогнозирования найденные взаимосвязи экономических показателей и закономерности их изменения. При этом естественным является применение статистических подходов к прогнозированию.
Процесс прогнозирования, опирающийся на статистические методы, распадается на два этапа.
Первый, индуктивный, заключается в обобщении данных, наблюдаемых за более или менее продолжительный период времени, и в представлении соответствующих статистических закономерностей в виде модели. Статистическую модель получают или в виде аналитически выраженной тенденции развития, или же в виде уравнения зависимости от одного или нескольких факторов-аргументов. В ряде случаев - при изучении сложных комплексов экономических показателей - прибегают к разработке так называемых взаимозависимых систем уравнений, состоящих в основном опять-таки из уравнений, характеризующих статистические зависимости. Процесс построения и применения статистической модели для прогнозирования, какой бы вид последняя не имела, обязательно включает выбор формы уравнения, описывающего динамику или взаимосвязь явлений, и оценивание его параметров с помощью того или иного метода.
Второй этап, собственно прогноз, является дедуктивным. На этом этапе на основе найденных статистических закономерностей определяют ожидаемое значение прогнозируемого признака.
Следует подчеркнуть, что полученные результаты не могут рассматриваться как нечто окончательное. При их оценке и использовании должны приниматься во внимание факторы, условия или ограничения, которые не были учтены при разработке статистической модели, должна осуществляться корректировка обнаруженных статистических характеристик в соответствии с ожидаемым изменением обстоятельств их формирования. Короче говоря, найденные с помощью статистических методов прогностические оценки являются важным материалом, который, однако, должен быть критически осмыслен. При этом главным является учет возможных изменений в самих тенденциях развития экономических явлений и объектов.
Известная условность в получаемых выводах связана с тем, что целый ряд статистических методов базируется на довольно жестких требованиях к качеству обрабатываемых данных (например, к их однородности) и строгих гипотезах о характере поведения анализируемых величин (их распределениях). На практике же прогностик зачастую, особенно если исследуются динамические ряды, имеет дело с информацией, качество которой в отношении выдвинутых требований оставляет желать лучшего или просто неизвестно. Обычно неизвестен и тип распределения переменных.
Таким образом, для практика остаются две альтернативы: или вообще отказаться от применения большинства методов и довольствоваться достаточно скудным инструментарием, или применять разнообразные статистические методы обработки данных, не забывая о соответствующих этим методам требованиях. Очевидно, что в последнем случае, если существуют сомнения в "чистоте эксперимента", не следует придавать получаемым статистическим выводам чрезмерно строгий смысл. В то же время эти выводы, как правило, оказываются полезными для практической деятельности и прогнозирования. Так, например, статистическая проверка гипотез основывается на предположении о существовании нормального распределения соответствующих переменных. На практике же мы в лучшем случае сталкиваемся с асимптотически нормальными распределениями (т.е. с распределениями, стремящимися к нормальным с ростом объема выборки). Вместе с тем проверка гипотез и в этих обстоятельствах дает практически приемлемые результаты, исключая разве такие ситуации, когда значения, скажем, t-статистики Стьюдента близки к критическому (ta). В последнем случае вывод, естественно, нельзя признать надежным.
Далеко не всегда статистические методы прогнозирования применяются самостоятельно, так сказать, в чистом виде. Часто их включают в виде важных элементов в комплексные методики, предусматривающие сочетание статистических методов с другими методами прогнозирования, например с экспертными оценками, различного рода экономико-математическими моделями и т.д. Такой комплексный подход к прогнозированию представляется наиболее плодотворным. Из сказанного выше вытекает, что статистические методы занимают важное место в системе методов прогнозирования, однако они ни в коей мере не должны рассматриваться как некий универсальный метод, как "золотой ключик", открывающий любую дверь.
В ряде случаев собственно статистическая обработка экономической информации непосредственно не приводит к получению прогноза, однако является важным звеном в общей системе из разработки. Такая обработка данных наблюдения, нацеленная на вскрытие различного рода конкретных статистических закономерностей, представляет собой, по сути дела, первый шаг на пути осмысливания информации и построения более сложных моделей, отображающих взаимодействие множества факторов.
Итак, необходимо подчеркнуть важную роль статистической методологии в рамках построения имитационных моделей, которые все больше привлекают внимание прогностиков. Потенциальные возможности имитационных моделей в отношении прогнозирования поведения изучаемых (моделируемых) систем еще далеки от полного раскрытия. Но уже сейчас очевидно, что успешность прогнозов, получаемых на основе имитационных моделей, существенно будет зависеть от качества статистического анализа эмпирического материала, от того, насколько такой анализ сможет выявить и обобщить закономерности развития изучаемых объектов во времени.
2.2 Практическое применение статистических методов прогнозирования (на примере метода наименьших квадратов)
прогнозирование фактографический экспертный статистический
Метод наименьших квадратов (МНК) является одним из выдающихся достижений математики. Данный метод в простейшем случае (линейная функция от одного фактора) был разработан К. Гауссом более двух столетий назад, в 1794 - 1795 гг. В 1794 г. (по другим данным - в 1795 г.) Гаусс разработал метод наименьших квадратов, один из наиболее популярных ныне статистических методов, и применил его при расчёте орбиты астероида Церера - для борьбы с ошибками астрономических наблюдений.
Суть МНК состоит в следующем.
Зачастую при исследованиях многих проблем исследователям и менеджерам приходится работать с уравнениями, содержащими стохастические параметры и неизвестные. Такие уравнения не решаются обычным путем, так как система из таких уравнений является несовместной. Поэтому "речь здесь может идти только о приближенном решении таких уравнений путем обеспечения минимума ошибок исходных начальных (условных) уравнений. Полученные таким образом значения искомых неизвестных являются наиболее вероятными".
Соглашение о минимизации суммы модулей ошибок всех условных уравнений впервые выдвинул Эджворт. Но популярным оно так и не стало. Другое соглашение было предложено и опубликовано Лежандром. После его публикации Гаусс заявил, что он много лет пользовался таким соглашением, однако признал, что оно, бесспорно, принадлежит именно Лежандру.
Этапами решения условных стохастических уравнений по принципу Лежандра являются: а) составление уравнения суммы ошибок условных уравнений; б) возведение этой суммы в квадрат; в) взятие частных производных по всем неизвестным и приравнивание этих производных к нулю; г) приведение подобных членов и получение системы нормальных уравнений; д) решение системы нормальных уравнений и нахождение наиболее вероятных значений неизвестных. Главное в этом решении то, что квадратическая функция ошибок начальных уравнений имеет всегда минимум, причем только один.
Наилучшее решение рассматриваемых вопросов возможно именно с помощью МНК.
Как и любые другие методы, МНК имеет свои недостатки. Например, может оказаться (при коллинеарности уравнений), что определитель матрицы нормальных уравнений равен нулю или весьма незначительно отличается от него. Решение системы нормальных уравнений в таком случае невозможно и нецелесообразно. Однако это явление встречается очень редко. Кроме того, существует ряд методов (например, метод регуляризации), позволяющих перед решением освободиться от плохой обусловленности матрицы нормальных уравнений, коллинеарности и даже мультиколлинеарности. Все это ничуть не снижает ценности МНК в технических приложениях.
Рассмотрим примеры практического использования МНК.
Первый пример - исследование финансового положения потенциальных заемщиков в банковской практике. Пусть мы имеем систему из n условных (начальных) уравнений в виде:
kx + Bky + Ckz + Dku + Lk = 0 (k = 1, 2... n),

где x, y, z, u - искомый финансовый вес n различных заемщиков;k, Bk, Ck, Dk - известные финансовые потери от n разных заемщиков;k - случайные значения сумм финансовых потерь от n заемщиков.


Имея несколько начальных уравнений, можно пропустить указанные громоздкие и очень трудоемкие этапы реализации МНК. При этом необходимо последовательно умножить все члены первого условного уравнения на свои A, B, C и D. В результате из одного условного уравнения получим четыре уравнения. Со вторым, третьим и четвертым условными уравнениями поступаем так же. В итоге имеем 16 новых уравнений. Приведя в них подобные члены, получаем систему четырех нормальных уравнений. Запишем ее в более удобных обозначениях Гаусса, принятых в астрономии и геодезии:

[AA]x + [AB]y + [AC]z + [AD]u + [AL] = 0;


[BA]x + [BB]y + [BC]z + [BD]u + [BL] = 0;
[CA]x + [CB]y + [CC]z + [CD]u + [CL] = 0;
[DA]x + [DB]y + [DC]z + [DD]u + [DL] = 0,

где [BA]=[AB], [CA]=[AC] и т.д., [AA]=SUM Ak2, [AB]=SUM AkBk, [AL]=SUM AkLk и т.д.


Таким образом, из имеющихся начальных уравнений получилась система нормальных уравнений, вполне пригодная для решения. Неизвестные x, y, z, u находим по известным выражениям:
= Dx / D, y = Dy / D, z = Dz / D, u = Du / D,

где D - определитель системы нормальных уравнений;, Dy, Dz, Du - определители соответствующих неизвестных, образуемые установкой в определитель D последовательно столбца свободных членов.


Вес неизвестных находится по выражениям:
= D / D11, Py = D / D22, Pz = D / D33, Pu = D / D44,

где D11, D22, D33, D44 - алгебраические дополнения элементов главной диагонали матрицы нормальных уравнений.


Ошибки вычисления (СКО) неизвестных находятся по выражениям:
Sx = S0 / \/Px, Sy = S0 / \/Py, Sz = S0 / \/Pz, Su = S0\/Pu,

где S0 = S / (n - m), S - сумма квадратов ошибок нормальных уравнений;- число начальных уравнений; m - число неизвестных.


Выходные оценки МНК имеют вид: xb = x +- Sx, yb = y +- Sy, zb = z +- Sz, ub = u +- Su.
Второй пример. Предприятие столкнулось с проблемой разделения затрат на текущий ремонт оборудования, которые являются смешанными. Величина этих затрат и объем производства продукции по месяцам представлены в таблице 1.

Таблица 1 Величина затрат и объем производства продукции на предприятии



Месяц

Объем производства продукции, тыс.ед.

Затраты на текущий ремонт оборудования, тыс.руб.

Январь

1,2

450

Февраль

1,0

430

Март

1,4

580

Апрель

1,8

690

Май

1,6

620

Июнь

2,0

680

Июль

2,4

730

Август

2,2

720

В среднем за месяц

1,7

612,5

Алгоритм расчета на основе МНК представлен в таблице 2.


Таблица 2 Алгоритм расчета на основе МНК



Месяц

Объем производства продукции Х, тыс.ед.

Х - Х

Смешанные затраты всего, З (тыс.руб.)

З - З

(Х - Х)2

(Х - Х) ґ (З - З)

Январь

1,2

-0,5

450

-162,5

0,25

81,25

Февраль

1,0

-0,7

430

-182,5

0,49

127,75

Март

1,4

-0,3

580

-32,5

0,09

9,75

Апрель

1,8

0,1

690

77,5

0,01

7,75

Май

1,6

-0,1

620

7,5

0,01

-0,75

Июнь

2,0

0,3

680

67,5

0,09

20,25

Июль

2,4

0,7

730

117,5

0,49

82,25

Август

2,2

0,5

720

107,5

0,25

53,75

Итого







4900




1,68

382,0

Среднее значение

1,7




612,5










Переменные затраты на единицу изделия рассчитываются следующим образом:





В расчете на среднемесячный объем производства продукции переменные затраты составят: 227,4 ґ 1700 = 386,6 тыс.руб. Постоянные издержки будут равны 225,9 тыс.руб. (612,5 - 386,6).


В заключение отметим, что метод наименьших квадратов чувствителен к значительным отклонениям от средних, и иногда более грубые методы могут давать более точные результаты.

Заключение


Под методами прогнозирования следует понимать совокупность приемов и способов мышления, позволяющих на основе анализа ретроспективных данных, экзогенных (внешних) и эндогенных (внутренних) связей объекта прогнозирования, а также их измерений в рамках рассматриваемого явления или процесса вывести суждения определенной достоверности относительно его (объекта) будущего развития.


Значительную группу методов прогнозирования составляют статистические методы. Статистические методы представляют собой совокупность методов обработки количественной информации об объекте прогнозирования, объединенной по принципу выявления содержащихся в ней математических закономерностей изменения характеристик данного объекта с целью получения прогнозных моделей.
Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты данной научной и прикладной деятельности находятся на стыке дисциплин.
Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.
Прикладная статистика - наука о методах обработки статистических данных. Методы прикладной статистики активно применяются в технических исследованиях, экономике, теории и практике управления (менеджмента), социологии, медицине, геологии, истории и т.д. С результатами наблюдений, измерений, испытаний, опытов, с их анализом имеют дело специалисты во всех отраслях практической деятельности, почти во всех областях теоретических исследований.
Исследовать явление статистическими методами - значит наблюдать множество его элементов или наблюдать само явление во множестве его повторений в пространстве или (и) во времени, охарактеризовать результаты наблюдений в их совокупности статистическими показателями, анализировать их с учетом формы проявления закономерностей в массовых явлениях и действующих в них общих законов.
На каждой из стадий применяются специфические приемы и способы (методы массовых наблюдений, группировок, обобщающих показателей, табличный метод, метод графических изображений, способы преобразования динамических рядов, метод корреляционного анализа и др.), которые в своей совокупности и составляют содержание статистического метода.
В настоящее время на отечественных предприятиях продолжают развиваться структуры, нуждающиеся в статистических методах, - подразделения качества, надежности, управления персоналом, центральные заводские лаборатории и другие. Толчок к развитию в последние годы получили службы контроллинга, маркетинга и сбыта, логистики, сертификации, прогнозирования и планирования, инноваций и инвестиций, управления рисками, которым также полезны различные статистические методы. Статистические методы необходимы органам государственного и муниципального управления, организациям силовых ведомств, транспорта и связи, медицины, образования, агропромышленного комплекса, научным и практическим работникам всех областей деятельности.

Список литературы


1. Постановление Правительства Российской Федерации от 7 апреля 2004 г. N 188 "Вопросы Федеральной службы государственной статистики" (с посл. изм. и доп.) // СПС "Консультант-Плюс", 2009 г.


2. Положение о Федеральной службе государственной статистики. Утверждено Постановлением Правительства РФ от 30 июля 2004 г. N 399 (с посл. изм. и доп.) // СПС "Консультант-Плюс", 2009 г.
. Распоряжение Правительства РФ от 30 июля 2004 г. N 1024-р о подчинении Федеральной службе государственной статистики территориальных органов Госкомстата РФ // СПС "Консультант-Плюс", 2009 г.
. Федеральный план статистических работ на 2008 - 2010 годы, утвержденный распоряжением Правительства Российской Федерации от 06.05.2008 N 671-р // СПС "Консультант-Плюс", 2009 г.
. Арженовский С.В. Методы социально-экономического прогнозирования. Учебное пособие. - М.: Дашков и К, Наука-Спектр, 2008. - 390 с.
. Басовский Л.Е. Прогнозирование и планирование в условиях рынка Уч. пос. - М.: Финансы и статистика, 2002. - 345 с.
. Бесфамильная Л.В., Цыганов А.А. Статистика - основа качества в страховом деле // Стандарты и качество. - 2004. - №7. - С. 22 - 26.
. Большой экономический словарь / Под ред. А.Н. Азрилияна. - 2-е изд., перераб. и доп. - М.: Ин-т новой экономики, 1997. - 1376 с.
. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. 3-е изд. - М.: Наука, 1983.
. Бухонова С.М., Дорошенко Ю.А., Сыров М.В., Тумина Т.А. Теоретические и методические основы анализа трансакционной составляющей затрат на инновационную деятельность // Экономический анализ: теория и практика. - 2008. - №16. - С. 23 - 30.
11. Высшая математика для экономистов / Под ред. Н.Ш. Кремера. - М.: Республика, 1998. - 456 с.
12. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. - М.: Наука, 1965. - 524 с.
. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. - М.: Наука, 1966. - 301 с.
. Дуброва Т.А. Статистические методы прогнозирования в экономике. - М.: Московский международный институт эконометрики, информатики, финансов и права, 2003. - 50 с.
. Жихарев В.Н., Орлов А.И. Законы больших чисел и состоятельность статистических оценок в пространствах произвольной природы. - В сб.: Статистические методы оценивания и проверки гипотез. Межвузовский сборник научных трудов. - Пермь: Изд-во Пермского государственного университета, 1998. - С. 65 - 84.
. Клейн Ф. Лекции о развитии математики в ХIХ столетии. Часть I. - М.-Л.: Объединенное научно-техническое издательство НКТП СССР, 1937. - 432 с.
. Крамер Г. Математические методы статистики. 2-е изд. - М.: Мир, 1975. - 648 с.
. Моисейко В. Управление в структурах малого и среднего бизнеса: системно-конструктивистский подход // Проблемы теории и практики управления. - 2003. - №3. - С. 92 - 96.
. Налимов В.В., Мульченко З.М. Наукометрия. Изучение развития науки как информационного процесса. - М.: Наука, 1969. - 192 с.
. Никитина Е.П., Фрейдлина В.Д., Ярхо А.В. Коллекция определений термина "статистика". - М.: МГУ, 1972. - 46 с.
. Норман Дрейпер, Гарри Смит. Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. 3-е изд. - М.: "Диалектика", 2007. - 456 с.
. Орлов А.И. Высокие статистические технологии // Заводская лаборатория. - 2003. - №11. - С. 55 - 60.
. Орлов А.И. О перестройке статистической науки и её применений // Вестник статистики. - 1990. - №1. - С. 65 - 71.
. Орлов А.И. О современных проблемах внедрения прикладной статистики и других статистических методов // Заводская лаборатория. - 1992. - №1. - С. 67 - 74.
. Орлов А.И. Эконометрика. Учебник для вузов. Изд. 3-е, исправленное и дополненное. - М.: Изд-во "Экзамен", 2004. - 576 с.
. Писарева О.М. Методы прогнозирования развития социально-экономических систем. - М.: Высшая школа, 2007. - 591 с.
. Плошко Б.Г., Елисеева И.И. История статистики: Учеб. пособие. - М.: Финансы и статистика, 1990. - 295 с.
. Практикум по экономике организации (предприятия): Учеб. пос. / Под ред. П.В. Тальминой и Е.В. Чернецовой. 2-е изд., доп. - М.: Финансы и статистика, 2006. - 480 с.
29. Прикладное прогнозирование национальной экономики: учебное пособие / под ред. В.В. Ивантера, И.А. Буданова, А.Г. Коровкина, В.С. Сутягина. - М.: Издательство "ЭкономистЪ", 2007. - 390 с.
. Светуньков С.Г. Основы теории эконометрии комплексных переменных. - СПб.: Изд-во СПбГУЭФ, 2008. - 108 с.
31. Светуньков С.Г., Светуньков И.С. Производственные функции комплексных переменных. - СПб.: Издательство СПбГУЭФ, 2006. - 579 с.
. Теория статистики: Учебник / Под ред. проф. Г.Л. Громыко. - М.: Финансы и статистика, 2000. - 567 с.
33. Тутубалин В.Н. Границы применимости (вероятностно-статистические методы и их возможности). - М.: Знание, 1977. - 64 с.
. Четыркин Е.М. Статистические методы прогнозирования. - М.: Статистика, 1977. - 340 с.
. Экономика предприятия: Учеб. пособие / Т.А. Симунина, Е.Н. Симунин, В.С. Васильцов и др. 3-е изд., перераб. и доп. - М.: КНОРУС, 2008. - 567 с.
. Экономико-математические методы и прикладные модели / Под ред. В.В. Федосеева. - М.: Перспектива, 2001. - 300 с.

Приложение





Рис. 1. Конструктивная классификация методов прогнозирования.
Download 69.03 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling