Постановка основной задачи линейного программирования Линейное программирование


Download 241.16 Kb.
bet1/5
Sana18.06.2023
Hajmi241.16 Kb.
#1584164
  1   2   3   4   5
Bog'liq
Оптимизация плана производства - StudentLib

1. Постановка основной задачи линейного программирования


1.1 Линейное программирование


Линейное программирование - это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием. Такие задачи находят обширные приложения в различных сферах человеческой деятельности. Систематическое изучение задач такого типа началось в 1939-1940 гг. в работах Л.В. Канторовича.


К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.
Круг задач, решаемых при помощи методов линейного программирования достаточно широк. Это, например:
· задача об оптимальном использовании ресурсов при производственном планировании;
· задача о смесях (планирование состава продукции);
· задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или);
· транспортные задачи (анализ размещения предприятия, перемещение грузов).
Линейное программирование - наиболее разработанный и широко применяемый раздел математического программирования (кроме того, сюда относят: целочисленное, динамическое, нелинейное, параметрическое программирование). Это объясняется следующим:
· математические модели большого числа экономических задач линейны относительно искомых переменных;
· данный тип задач в настоящее время наиболее изучен. Для него разработаны специальные методы, с помощью которых эти задачи решаются, и соответствующие программы для ЭВМ;
· многие задачи линейного программирования, будучи решенными, нашли широкое применение;
· некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.
Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.
В общем виде модель записывается следующим образом:
целевая функция


(1.1)

при ограничениях




(1.2)

требования неотрицательности




(1.3)
где xj - переменные (неизвестные);
- коэффициенты задачи линейного программирования.
Задача состоит в нахождении оптимального значения функции (1.1) при соблюдении ограничений (1.2) и (1.3).
Систему ограничений (1.2) называют функциональными ограничениями задачи, а ограничения (1.3) - прямыми.
Вектор, удовлетворяющий ограничениям (1.2) и (1.3), называется допустимым решением (планом) задачи линейного программирования. План, при котором функция (1.1) достигает своего максимального (минимального) значения, называется оптимальным.



Download 241.16 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling