Построение кривых регрессий
Парная линейная регрессия
Download 1.19 Mb.
|
вер лек 2 (2)
ГЛАВА 2 . МОДЕЛИ РЕГРЕССИИ 2.1. Парная линейная регрессия Можно выделить три основных класса моделей, которые применяются для анализа и прогнозирования экономических процессов: модели временных рядов, регрессионные модели с одним уравнением, системы одновременных уравнений. Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные. Линейная регрессия представляет собой линейную функцию между условным математическим ожиданием зависимой переменной Y и одной объясняющей переменной X: , где - значения независимой переменной в i-ом наблюбдении, i=1,2,…,n. Принципиальной является линейность уравнения по параметрам , . Так как каждое индивидуальное значение отклоняется от соответствующего условного математического ожидания, тогда вданную формулу необходимо ввести случайное слагаемое , тогда получим: Данное соотношение называется теоретической линейной регрессионной моделью, а и - теоретическими параметрами (теоретическими коэффициентами) регрессии, - случайным отклонением. Следовательно, индивидуальные значения представляются в виде суммы двух компонент – систематической и случайной [12] Для определения значений теоретических коэффициентов регрессии необходимо знать и использовать все значения переменных X и Y генеральной совокупности, что невозможно. задачи регрессионного линейного анализа состоят в том, чтобы по имеющимся статистическим данным ( ), i=1,…,n для переменных X и Y: получить наилучшие оценки неизвестных параметров и ; проверить статистические гипотезы о параметрах модели; проверить, достаточно ли хорошо модель согласуется со статистическими данными. Парная линейная регрессия - это причинная модель статистической связи линейной между двумя количественными переменными «x» и «у», представленная уравнением , где х - переменная независимая, y - переменная зависимая. Коэффициент регрессии «b» и свободный член уравнения регрессии «a» вычисляются по формулам: , где r - коэффициент линейной корреляции Пирсона для переменных x и y; sx и sy - стандартные отклонения для переменных x и y; x,y - средние арифметические для переменных x и y. Существуют два подхода к интерпретации коэффициента регрессии b. Согласно первому из них, b представляет собой величину, на которую изменяется предсказанное по модели значение ŷi = a + bxi при увеличении значения независимой переменной x на одну единицу измерения, согласно второй - величину, на которую в среднем изменяется значение переменной yi при увеличении независимой переменной x на единицу. На диаграмме рассеяния коэффициент b представляет тангенс угла наклона линии регрессии y = a + bx к оси абсцисс. Знак коэффициента регрессии совпадает со знаком коэффициента линейной корреляции: значение b>0 свидетельствует о прямой линейной связи, значение b < 0 - об обратной. Если b = 0, линейная связь между переменными отсутствует (линия регрессии параллельна оси абсцисс). Свободный член уравнения регрессии a интерпретируется, если для независимой переменной значение x = 0 имеет смысл. В этом случае y = a, если x = 0. Качество (объясняющая способность) уравнения парной линейной регрессии оценивается с помощью коэффициента детерминации. После построения уравнения регрессии необходима интерпретация и анализ, а также словесное описание полученных результатов с трактовкой найденных коэффициентов. Download 1.19 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling