Построение кривых регрессий


Множественная линейная регрессия


Download 1.19 Mb.
bet4/4
Sana18.06.2023
Hajmi1.19 Mb.
#1565033
TuriСамостоятельная работа
1   2   3   4
Bog'liq
вер лек 2 (2)

2.2. Множественная линейная регрессия
На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. В этом случае вместо парной регрессии рассматривается множественная. В общем случае в регрессионный анализ вовлекаются несколько независимых переменных. Это, конечно же, наносит ущерб наглядности получаемых результатов, так как подобные множественные связи в конце концов становится невозможно представить графически. Переменные, объявленные независимыми, могут сами коррелировать между собой; этот факт необходимо обязательно учитывать при определении коэффициентов уравнения регрессии для того, чтобы избежать ложных корреляций.
Заданием множественного регрессионного анализа является построение такого уравнения прямой k-мерном пространстве, отклонение результатов наблюдений  от которой были бы минимальными. Используя для этого метод наименьших квадратов, получается система нормальных уравнений, которую можно представить и в матричной форме.
Множественная линейная регрессия - причинная модель статистической связи линейной между переменной зависимой y и переменными независимыми x1,x2,...,xk, представленная уравнением y = b1x1 + b2x2 + ... + bkxk + a = ∑ bixi + a . Коэффициенты b1,b2,...,bk называются нестандартизированными коэффициентами, а - свободным членом уравнения регрессии. Уравнение регрессии существует также в стандартизированном виде, когда вместо исходных переменных используются их z-оценки: zy = ∑ βizi. Здесь zy - z-оценка переменной у; z1,z2,...,zk - z-оценки переменных x1,x2,...,xk; β12,...,βk - стандартизированные коэффициенты регрессии (свободный член отсутствует).
Для того чтобы найти стандартизированные коэффициенты, необходимо решить систему линейных уравнений:
β1 + r12β2 + r13β3 + ... + r1kβk = r1y,
r21β1 + β2 + r23β3 + ... + r2kβk = r2y,
r31β1 + r32β2 + β3 + ... + r3kβk = r3y,
...
rk1β1 + rk2β2 + rk3β3 + ... + βk = rky,
в которой rij - коэффициенты линейной корреляции Пирсона для переменных xi и xj; riy - коэффициент корреляции Пирсона для переменных xi и y. [8]
Нестандартизированные коэффициенты регрессии вычисляются по формуле bi = βi ∙ sy / si, где sy - стандартное отклонение переменной y; si - стандартное отклонение переменной хi. Свободный член уравнения регрессии находится по формуле a = y - ∑ bixi, где y - среднее арифметическое переменной y, xi - средние арифметические для переменных xi.
В настоящее время используются два подхода к интерпретации нестандартизированных коэффициентов линейной регрессии bi. Согласно первому из них, bi представляет собой величину, на которую изменится предсказанное по модели значение ŷ = ∑ bixi при увеличении значения независимой переменной xi на единицу измерения; согласно второму - величину, на которую в среднем изменяется значение переменной y при увеличении независимой переменной xi на единицу. Значения коэффициентов bi существенно зависят от масштаба шкал, по которым измеряются переменные y и xi, поэтому по ним нельзя судить о степени влияния независимых переменных на зависимую. Свободный член уравнения регрессии a равен предсказанному значению зависимой переменной ŷ в случае, когда все независимые переменные xi = 0. [8]
Стандартизированные коэффициенты βi являются показателями степени влияния независимых переменных xi на зависимую переменную y. Они интерпретируются как "вклад" соответствующей независимой переменной в дисперсию (изменчивость) зависимой переменной.
Качество (объясняющая способность) уравнения множественной линейной регрессии измеряется коэффициентом множественной детерминации, который равен квадрату коэффициента корреляции множественной R².
Предполагается, что все переменные в уравнении множественной линейной регрессии являются количественными. При необходимости включить в модель номинальные переменные используется техника dummy-кодирования.



ЗАКЛЮЧЕНИЕ
При наличии нескольких показателей задача регрессионного анализа решается независимо для каждого из них. Анализируя сущность уравнения регрессии, следует отметить следующие положения. Изменение значений других. Полученные коэффициенты не следует рассматривать как вклад соответствующего параметра в значение показателя. Уравнение регрессии является всего лишь хорошим аналитическим описанием имеющихся экономических данных, а не законом, описывающим взаимосвязи параметров и показателя. Это уравнение применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.
Главной причиной неточности прогноза является не столько неопределенность экстраполяции линии регрессии, сколько значительная вариация показателя за счет неучтенных в модели факторов. Ограничением возможности прогнозирования служит условие стабильности неучтенных в модели параметров и характера влияния учтенных факторов модели. Если резко меняется внешняя среда, то составленное уравнение регрессии потеряет свой смысл. Нельзя подставлять в уравнение регрессии такие значения факторов, которые значительно отличаются от представленных/ Рекомендуется не выходить за пределы одной трети размаха вариации параметра как за максимальное, так и за минимальное значения фактора.
СПИСОК ЛИТЕРАТУРЫ

  1. Елисеева И.И., Юзбашев М.М. Общая теория статистики. – Москва: Финансы и статистика, 2004. – 656с.

  2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. – М.: Инфра-М, 2004. – 416с.

  3. Общая теория статистики/ под ред. О.Э. Башиной, А.А. Спирина.– М.: Финансы и статистика, 2005. – 440с.

  4. Сизова Т.М. Статистика. - СПб.: СПбГУ ИТМО, 2005. - 190 с.

  5. Теория статистики/ под ред. Г.Л.Громыко. – М.: Инфра-М, 2005. – 476с.

  6. Теория статистики/ под ред. Р.А.Шмойловой. – М.: Финансы и статистика, 2009. –656с.

  7. Корреляционный и регрессионный анализ// http://dvo.sut.ru/libr/opds/i130hod2/7.htm

  8. Множественная регрессия// http://www.statsoft.ru/home/textbook/modules/stmulreg.html#cthe

  9. Регрессия// http://ru.science.wikia.com/wiki/%D0%A0%D

  10. Регрессионный анализ// http://www.kgafk.ru/kgufk/html/korandreg3.html

  11. Статистический анализ данных, моделирование и прогноз// http://miit.bsu.edu.ru/resources/inf/excel/excel06.htm

  12. Статистический анализ числовых величин и непараметрические методы. Парная регрессия// http://www.e-college.ru/xbooks/xbook019/book/index/index.html?go=part-005*page.htm

Download 1.19 Mb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling