Power Plant Engineering
Download 3.45 Mb. Pdf ko'rish
|
Power-Plant-Engineering
Fig. 6.8. Velocity Compounded Impulse Turbine.
204 POWER PLANT ENGINEERING Nozzle Moving blades Re-entry passage Steam re-entry Fig. 6.9. Flow of Steam on Blades. The whole expansion of steam from the steam chest pressure to the exhaust pressure takes place in the nozzles only. There is no drop in either in the moving blades or the fixed i.e. the pressure remains constant in the blades as in the simple impulse turbine. The steam velocity from the exit of the nozzle is very high as in the simple impulse turbine. Steam with this high velocity enters the first row of moving blades and on passing through these blades, the Velocity slightly reduces i.e. the steam gives up a part of its kinetic energy and reissues from this row of blades with a fairly high velocity. It then enters the first row of guide blades which directs the steam to the second row of moving blades. Actually, there is a slight drop in velocity in the fixed or guide blades due to friction. On passing through the second row of moving blades some drop in velocity again occurs i.e. steam gives up another portion of its kinetic energy to the rotor. After this, it is redirected again by the second row of guide lades to the third row of moving blades where again some drop in velocity occurs and finally the steam leaves the wheel with a certain velocity in a more or less axial direction. compared to the simple impulse turbine, the leaving velocity is small and it is about 2 percent of initial total available energy of steam. So we can say that this arrangement is nothing but splitting up the velocity gained from the exit of the nozzles into many drops through several rows of moving blades and hence the name velocity- compounded This type of turbine is also termed as Curtis turbine. Due to its low efficiency the three row wheel is used for driving small machines The two row wheel is more efficient than the three-row wheel. velocity compounding is also possible with only one row of moving blades. The whole pressure drop takes place in the nozzles and the high velocity steam passes through the moving blades into a reversing chamber where the direction of the steam is changed and the same steam is arranged to pass through the moving blade of the same rotor. So instead of using two or three rows of moving blades, only one row is required to pass the steam again and again; thus in each pass velocity decreases. Download 3.45 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling