Power Plant Engineering
Download 3.45 Mb. Pdf ko'rish
|
Power-Plant-Engineering
- Bu sahifa navigatsiya:
- 6.6. SIMPLE VELOCITY-COMPOUNDED IMPULSE TURBINE
Fig. 6.7. Pressure Compounded Impulse Turbine.
from the steam chest pressure to the condenser pressure into a series of smaller pressure drop across several stages of impulse turbine and hence this turbine is culled, pressure-compound impulse turbine. The pressure and velocity variation are also shown. The nozzles are fitted into a diaphragm which is locked in the casing. This diaphragm separates one wheel chamber from another. All rotors are STEAM TURBINE 203 mounted on the same shaft and the blades are attached on the rotor. The rotor (i.e. disc) may be keyed to the shaft or it may be integral part of shaft. The expansion of steam only takes place in the nozzles while pressure remains constant in the moving blades because each stage is a simple impulse turbine. So it is obvious from the pressure curve that the space between any two consecutive diaphragms is filled with steam at constant pressure and the pressure on either side of the diaphragm is different. Since the diaphragm is a stationary part, there must be clearance between the rotating shaft and the diaphragm. The steam tends to leak through this clear- ance for which devices like labyrinth packings, etc. are used. Since the drop in pressure of steam per stage is reduced, so the steam velocity leaving the nozzles and entering the moving blades is reduced which reduces the blade velocity. Hence for good economy or maximum work shaft speed is significantly reduced so as be reduced by increasing the number of stages according to ones need. The leaving velocity of the last stage of the turbine is much less compared to the de Laval turbine and the leaving loss amounts to about 1 to 2 percent of the initial total available energy. This turbine was invented by the late prof L. Rateau and so it is also known as Rateau Turbine. 6.6. SIMPLE VELOCITY-COMPOUNDED IMPULSE TURBINE In this type of turbine, the compounding is done for velocity of steam only i.e. drop in velocity is arranged in many small drops through many moving rows of blades instead of a single row of moving blades. It consists of a nozzle or a set of nozzles and rows of moving blades attached to the rotor or wheel and rows of fixed blades attached to casing as shown in Fig. 6.8. The fixed blades are guide blades which guide the steam to succeeding rows of moving blades, suitably arranged between the moving blades and set in a reversed manner. In this turbine, three rows or rings of moving blades are fixed on a single wheel or rotor and this type of wheel is termed as the three row wheel. There are two blades or fixed blades placed between Lint first and the second and the second and third rows of moving blades respectively. St eam c h es t pr e s s ur e In le t v e lo c ity L o st ve lo c it y C onden s e r pr es s ur e M o v in g bl ade s G u ide b la d es G ui d e bl ade s M ov ing bl a des M ov in g b lades No z z le Bearing Shaft Steam entering Nozzle Moving blades Guide blades Casing Exhaust steam Rotor wheel Download 3.45 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling