Keltirilgan normal forma.
III.4.1 - ta’rif. Predikatlar algebrasida inkor amali faqat elementar formulalar oldida kelib, kon’yunksiya, diz’yunksiya, kvantor amallaridan boshqa щech qanday amal qatnashmagan formula normal forma ( formula ) deyiladi.
III.4.2 - teorema. Predikatlar algebrasining ixtiyoriy formulasi yo normal forma, yo unga teng kuchli normal forma mavjud.
Isbot. Haqiqatdan, agar formulada Þ , Û amallari qatnashsa, ularda
Á Þ Â º ù Á Ú Â , Á Û Â º (ù Á Ú Â ) Ù ( Á Ú ù Â )
tengkuchliliklardan foydalanib Þ , Û amallarni ù , Ù , Ú amallari bilan almashtiramiz. Inkor amali faqat elementar formulalargagina tegishli bo‘lishi uchun
ù ( Á Ù Â ) º ù Á Ú ù Â , ù ( Á Ú Â ) º ù Á Ù ù Â ,
ù ( "x R ( x )) º $x ù R ( x ) , ù ( $x R ( x ) º "x ù R ( x )
tengkuchliliklardan foydalanish etarli.
III.4.3 - ta’rif. Predikatlar algebrasining normal formasida kvantorlar qatnashmasa yoki hamma kvantorlar barcha amallardan avval kelsa, bunday forma keltirilgan normal forma yoki preniksli normal forma deyiladi.
III.4.4 - teorema. Predikatlar algebrasining ixtiyoriy formulasi yo keltirilgan normal forma yo unga teng kuchli keltirilgan normal forma mavjud.
Bu teoremaning isbotini III.4.2 – teoremadan va III.3-§ da keltirilgan asosiy tengkuchliliklardan keltirib chiqarish mumkin.
Do'stlaringiz bilan baham: |