Представлена в редакцию
Download 1.31 Mb. Pdf ko'rish
|
raspoznavanie-botov-v-onlaynovyh-sotsialnyh-setyah-pri-pomoschi-algoritma-sluchaynyy-les
R News, 2002, vol. 2, no. 3,
pp. 18-22. 14. Biau G., Scornet E. A random forest guided tour. TEST, 2016, vol. 25, no. 2, pp. 197-227. DOI: 10.1007/s11749-016-0481-7 15. Classification and regression trees / L. Breiman a.o. Belmont, CA: Wadsworth Intern. Group, 1984. 358 p. 16. Safavian S., Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans. on Systems, Man and Cybernetics, 1991, vol. 21, no. 3, pp. 660-674. DOI: 10.1109/21.97458 17. Raileanu L.E., Stoffel K. Theoretical comparison between the Gini Index and Information Gain Criteria. Annals of Mathematics and Artificial Intelligence, 2004, vol. 41, no. 1, pp. 77-93. DOI: 10.1023/B:AMAI.0000018580.96245.c6 18. Cresci S., Di Pietro R., Petrocchi M., Spognardi A., Tesconi M. The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race. 26 th intern. conf. on World Wide Web Companion: WWW’17 Companion (Perth, Australia, April 3-7, 2017): Proc. N.Y.: ACM, 2017. Pp. 963-972. DOI: 10.1145/3041021.3055135 19. Chao Yang, Harkreader R., Guofei Gu. Empirical evaluation and new design for fighting evolv- ing Twitter spammers. IEEE Trans. on Information Forensics and Security, 2013, vol. 8, no. 8, pp. 1280-1293. DOI: 10.1109/TIFS.2013.2267732 20. Raschka S. Model evaluation, model selection, and algorithm selection in machine learning / Univ. of Wisconsin–Madison; Dep. of Statistics. 2018. Available at: https://sebastianraschka.com/pdf/manuscripts/model-eval.pdf , accessed 13.04.2019. 21. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selec- tion. 14 th Intern. joint conf. on artificial intelligence: IJCAI’95 (Montreal, Canada, August 20- 25, 1995): Proc. N.Y.: ACM, 1995. Vol. 2. Pp. 1137–1143. 22. Hossin M., Sulaiman M.N. A review on evaluation metrics for data classification evaluations. Intern. J. of Data Mining & Knowledge Management Process (IJDKP), 2015, vol. 5, no. 2, pp. 1-11. DOI: 10.5121/ijdkp.2015.5201 23. Caelen O. A Bayesian interpretation of the confusion matrix. Annals of Mathematics and Artifi- cial Intelligence, 2017, vol. 81, no. 3-4, pp. 429-450. DOI: 10.1007/s10472-017-9564-8 24. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine learning in Python. The J. of Machine Learning Research, 2011, vol. 12, pp. 2825-2830. 25. Davis C.A., Varol O., Ferrara E., Flammini A., Menczer F. BotOrNot: A system to evaluate so- cial bots. 25 th intern. conf. companion on World Wide Web: WWW’16 (Montreal, Canada, April 11-15, 2016): Proc. N.Y.: ACM, 2016. Pp. 273-274. DOI: 10.1145/2872518.2889302 Mechanical Engineering and Computer Science 41 26. Miller Z., Dickinson B., Deitrick W., Wei Hu, Alex Hai Wang. Twitter spammer detection using data stream clustering. J. Information Sciences – Informatics and Computer Science, Intelligent Systems, Applications, 2014, vol. 260, pp. 64-73. DOI: 10.1016/j.ins.2013.11.016 27. Cresci S., Di Pietro R., Petrocchi M., Spognardi A., Tesconi M. DNA-inspired online behavioral modeling and its application to spambot detection. IEEE Intelligent Systems, 2016, vol. 31, no. 5, pp. 58-64. DOI: 10.1109/MIS.2016.29 Download 1.31 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling