Представлена в редакцию
Download 1.31 Mb. Pdf ko'rish
|
raspoznavanie-botov-v-onlaynovyh-sotsialnyh-setyah-pri-pomoschi-algoritma-sluchaynyy-les
References
1. De Meo P., Ferrara E., Fiumara G., Provetti A. On Facebook, most ties are weak. Communica- tions of the ACM, 2014, vol. 57, no. 11, pp. 78-84. DOI: 10.1145/2629438 2. Tsagkias M., de Rijke M., Weerkamp W. Linking online news and social media. 4 th intern. conf. on Web search and data mining: WSDM’11 (Hong Kong, China, February 9-12, 2011): Proc. N.Y.: ACM, 2011. Pp. 565-574. DOI: 10.1145/1935826.1935906 3. Gubanov D.A., Novikov D.A., Chkhartishvili A.G. Sotsial'nye seti: Modeli informatsionnogo vliianiia, upravleniia i protivoborstva [Social networks: models of informational influence, con- trol and confrontation]. Moscow: Fizmatlit Publ., 2010. 225 p. (in Russian). 4. Shushkov G.M., Sergeev I.V. Kontseptual'nye osnovy informatsionnoj bezopasnosti Rossijskoj Federatsii [Conceptual foundations of information security of the Russian Federation]. Aktual'nye voprosy nauchnoj i nauchno-pedagogicheskoj deiatel'nosti molodykh uchenykh: III Vserossijskaia zaochnaia nauchno-prakticheskaia konferentsiia [Topical issues of scientific and scientific-pedagogical activity of young scientists: III All-Russian scientific and practical. conf. (Moscow, Russia, November 23 – December 30, 2015)]: Proc. Moscow, 2016. Pp. 69-76 (in Russian). 5. Lyfenko N.D. Virtual users in social networks: myths and reality. Voprosy kiberbezopasnosti [Cybersecurity Issues], 2014, no. 5(8), pp. 17-20 (in Russian). 6. Ferrara E., Varol O., Davis C., Menczer F., Flammini A. The rise of social bots. Communica- tions of the ACM, 2016, vol. 59, no. 7, pp. 96-104. DOI: 10.1145/2818717 7. Ratkiewicz J., Conover M.D., Meiss M.R., Gonçalves B., Flammini A., Menczer F. Detecting and tracking political abuse in social media. 5 th intern. AAAI conf. on weblogs and social media: ICWSM’11 (Barcelona, Spain, July 17-21, 2011): Proc. Palo Alto, CA: AAAI Press, 2011. Pp. 297-304. 8. Ferrara E. Manipulation and abuse on social media. ACM SIGWEB Newsletter, 2015, article no. 4. DOI: 10.1145/2749279.2749283 9. Wang A.H. Detecting spam bots in online social networking sites: A machine learning ap- proach. Data and application security and privacy XXIV: 24 th Annual IFIP conf. on data and applications security and privacy: DBSec 2010 (Rome, Italy, June 21-23, 2010): Proc. B.; HDBL.: Springer, 2010. Pp. 335-342. DOI: 10.1007/978-3-642-13739-6_25 10. Faraz Ahmed, Muhammad Abulaish. A generic statistical approach for spam detection in online social networks. Computer Communications, 2013, vol. 36, no. 10-11, pp. 1120-1129. DOI: 10.1016/j.comcom.2013.04.004 11. Zi Chu, Indra Widjaja, Haining Wang. Detecting social spam campaigns on Twitter. Applied cryptography and network security: 10 th intern. conf. on applied cryptography and network se- curity: ACNS'12 (Singapore, Singapore, June 26-29, 2012): Proc. B.; HDBL.: Springer, 2012. Pp. 455-472. DOI: 10.1007/978-3-642-31284-7_27 Mechanical Engineering and Computer Science 40 12. Haewoon Kwak, Changhyun Lee, Hosung Park, Sue Moon. What is Twitter, a social Network or a news media? 19 th intern. conf. on World Wide Web: WWW’10 (Raleigh, NC, USA, April 26-30, 2010): Proc. N.Y.: ACM, 2010. Pp. 591-600. DOI: 10.1145/1772690.1772751 13. Liaw A., Wiener M. Classification and regression by randomForest. Download 1.31 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling