Qoldiqli bo`lish haqida teorema


Download 73.41 Kb.
bet3/3
Sana18.06.2023
Hajmi73.41 Kb.
#1558119
1   2   3
Bog'liq
2-mustaqil ish

1-misol. P(x) ko’phadni (x-3)2 ga bo’linganda qoldiq (x-1) bo’lsa P2(x) ko’phadi (x-3)2 ga bo’lingandagi qoldiqni toping.


Yechish. P2(x)=

X2-2x+1
X2-6x+9

X2-6x+9

1

4x-8=r(x)



2-misol. P(x)=(x2-3x+2)3+2(x2-3x+2)2+2x2+x+10 ko’phadi (x2-3x+4) ga bo’linganda qolgan qoldiqni toping .
Yechish: P(x)=(x2-3x+2)3+2(x2-3x+2)2+2x2+x+10=T3-3t2*2+3*22*t-8+2(t2-4t+4)+2x2+x+10=

2x2+x+10
2x2-6x+8

X2-3x+4

2

7x+2

R(x)=7x+2
3-misol. P(x)=x6-1 ko’phadni x2+x+1 ga bo’lingandagi qoldiqni aniqlang.
Yechish: P(x)=x6-1=(x3-1)(x3+1)=(x-1)(x2+x+1)(x+1)(x2-x+1);
(x2+x+1) r(x)=0.
4-misol. P(x+3)=x2-x+n bo’lsa P(x-2) ko’phadni x-3 ga bo’lganimizda qoldiq 10, n=?
Yechish:
P(x-2)=(x-3)*Q(x)+10
X=3 P(1)=0*Q(x)+10=10
X=-2 P(-2+3)=4+2+n
P(1)=6+n=10 n=4.


5-misol. P(x)=ax3+bx2+7x-12 ko’phadni Q(x) ko’phadga bo’linganda bo’linma x bo’lsa qoldiqni toping.
Yechish: P(x)=
r(x)=-12
Javob: r(x)=-12
6-misol. P(x)=x13+4x10+x8+5x7-2x3+3x-1 ko’phadni x4 ga bo’lgandagi qoldiq qancha.
Yechish: P(x)=x13+4x10+x8+5x7-2x3+3x-1=x4*Q(x)+r(x)

d


P(x)=x4(x9-4x6+5x)
-2x3+3x-1=x4Q(x)+r(x)
r(x)=-2x3+3x-1


Javob: r(x)=-2x3+3x-1

Download 73.41 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling