Qoldiqli bo`lish haqida teorema
Download 73.41 Kb.
|
2-mustaqil ish
1-misol. P(x) ko’phadni (x-3)2 ga bo’linganda qoldiq (x-1) bo’lsa P2(x) ko’phadi (x-3)2 ga bo’lingandagi qoldiqni toping.
Yechish. P2(x)=
2-misol. P(x)=(x2-3x+2)3+2(x2-3x+2)2+2x2+x+10 ko’phadi (x2-3x+4) ga bo’linganda qolgan qoldiqni toping . Yechish: P(x)=(x2-3x+2)3+2(x2-3x+2)2+2x2+x+10=T3-3t2*2+3*22*t-8+2(t2-4t+4)+2x2+x+10=
R(x)=7x+2 3-misol. P(x)=x6-1 ko’phadni x2+x+1 ga bo’lingandagi qoldiqni aniqlang. Yechish: P(x)=x6-1=(x3-1)(x3+1)=(x-1)(x2+x+1)(x+1)(x2-x+1); (x2+x+1) r(x)=0. 4-misol. P(x+3)=x2-x+n bo’lsa P(x-2) ko’phadni x-3 ga bo’lganimizda qoldiq 10, n=? Yechish: P(x-2)=(x-3)*Q(x)+10 X=3 P(1)=0*Q(x)+10=10 X=-2 P(-2+3)=4+2+n P(1)=6+n=10 n=4. 5-misol. P(x)=ax3+bx2+7x-12 ko’phadni Q(x) ko’phadga bo’linganda bo’linma x bo’lsa qoldiqni toping. Yechish: P(x)= r(x)=-12 Javob: r(x)=-12 6-misol. P(x)=x13+4x10+x8+5x7-2x3+3x-1 ko’phadni x4 ga bo’lgandagi qoldiq qancha. Yechish: P(x)=x13+4x10+x8+5x7-2x3+3x-1=x4*Q(x)+r(x) d P(x)=x4(x9-4x6+5x) -2x3+3x-1=x4Q(x)+r(x) r(x)=-2x3+3x-1 Javob: r(x)=-2x3+3x-1 Download 73.41 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling