Распределение случайных величин с двумя переменными и функция вероятности. Может плотность
Download 78.38 Kb.
|
- Bu sahifa navigatsiya:
- 10. Список литературы
9. Распределение Пуассона
Еще одно широко используемое дискретное распределение – распределение Пуассона. Случайная величина Y имеет распределение Пуассона, если где λ – параметр распределения Пуассона, и P(Y=y)=0 для всех прочих y (при y=0 обозначено 0! =1). Для распределения Пуассона M(Y) = λ, D(Y) = λ. Это распределение названо в честь французского математика С.Д.Пуассона (1781-1840), впервые получившего его в 1837 г. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность р осуществления события мала, но число испытаний n велико, причем np = λ. Точнее, справедливо предельное соотношение Поэтому распределение Пуассона (в старой терминологии «закон распределения») часто называют также «законом редких событий». Распределение Пуассона возникает в теории потоков событий. Доказано, что для простейшего потока с постоянной интенсивностью Λ число событий (вызовов), происшедших за время t, имеет распределение Пуассона с параметром λ = Λt. Следовательно, вероятность того, что за время t не произойдет ни одного события, равна e-Λt, т.е. функция распределения длины промежутка между событиями является экспоненциальной. Распределение Пуассона используется при анализе результатов выборочных маркетинговых обследований потребителей, расчете оперативных характеристик планов статистического приемочного контроля в случае малых значений приемочного уровня дефектности, для описания числа разладок статистически управляемого технологического процесса в единицу времени, числа «требований на обслуживание», поступающих в единицу времени в систему массового обслуживания, статистических закономерностей несчастных случаев и редких заболеваний, и т.д. Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в обширной (более миллиона названий статей и книг на десятках языков) литературе по вероятностно-статистическим методам. 10. Список литературы распределение квантиль пирсон стьюдент фишер 1. А.И. Орлов. Математика случая, М.: МЗ-Пресс, 2004. Download 78.38 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling