Реферат по предмету: «Общая геология»
Каноническое уравнение прямой
Download 469.56 Kb.
|
JORAYEV MUSLIMBEK
Каноническое уравнение прямой:
Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy. Поставим себе задачу: получить уравнение прямой a, если - некоторая точка прямой a и - направляющий вектор прямой a. Пусть - плавающая точка прямой a. Тогда вектор является направляющим вектором прямой a и имеет координаты (при необходимости смотрите статьюнахождение координат вектора через координаты точек). Очевидно, что множество всех точек на плоскости определяют прямую, проходящую через точку и имеющую направляющий вектор тогда и только тогда, когда векторы и коллинеарны. Запишем необходимое и достаточное условие коллинеарности векторов и : . Последнее равенство в координатной форме имеет вид . Если и , то мы можем записать Полученное уравнение вида называют каноническим уравнением прямой на плоскости в прямоугольной системе координат Oxy. Уравнение также называют уравнением прямой в каноническом виде. Итак, каноническое уравнение прямой на плоскости вида задает в прямоугольной системе координат Oxy прямую линию, проходящую через точку и имеющую направляющий вектор . Приведем пример канонического уравнения прямой на плоскости. К примеру, уравнение является уравнением прямой в каноническом виде. Прямая, соответствующая этому уравнению, проходит через точку , а - ее направляющий вектор. Ниже приведена графическая иллюстрация. Отметим следующие важные факты: · если - направляющий вектор прямой и прямая проходит как через точку , так и через точку , то ее каноническое уравнение можно записать как , так и ; · если - направляющий вектор прямой, то любой из векторов также является направляющим вектором данной прямой, следовательно, любое из уравнений прямой в каноническом виде соответствует этой прямой. уравнениями прямой: , , (7) где – координаты произвольной фиксированной точки данной прямой, – соответствующие координаты произвольного направляющего вектора данной прямой, t – параметр. Доказательство. В соответствии с определением уравнения любого множества точек координатного пространства, мы должны доказать, что уравнениям (7) удовлетворяют все точки прямой L и, с другой стороны, не удовлетворяют координаты точки не лежащей на прямой. Пусть произвольная точка . Тогда векторы и являются по определению коллинеарными и по теореме о коллинеарности двух векторов следует, что один из них линейно выражается через другой, т.е. найдется такое число , что . Из равенства векторов и следует равенство их координат: , , , Download 469.56 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling