Reja: Aniq integral va uning xossalari. Aniq integralni hisoblash usullari Aniq integralning geometriyaga tadbiqi Figuralar yuzlarini qutb koordinatalarida hisoblash. Egri chiziq yoyining uzunligi


Download 424.02 Kb.
bet1/7
Sana11.05.2023
Hajmi424.02 Kb.
#1451842
  1   2   3   4   5   6   7
Bog'liq
Aniq integral va uning xossalari. Aniq integralni hisoblas


Reja:

  1. Aniq integral va uning xossalari. Aniq integralni hisoblash usullari

  2. Aniq integralning geometriyaga tadbiqi

  3. Figuralar yuzlarini qutb koordinatalarida hisoblash.

  4. Egri chiziq yoyining uzunligi.

  5. Jism hajmini parallel kesimlsrning yuzalari bo’yicha hisoblash


1.Aniq integral va uning xossalari. Aniq integralni hisoblash usullari


kesmada f(x) funksiya aniqlangan bo’lsin. kesmani nuqtalar bilan n ta bo’lakka ajratamiz. Har bir kesmadan ixtiyoriy nuqta olib

yig’indini tuzamiz. Bunda

ko’rinishidagi yig’indi integral yig’indi deyiladi. Uning max dagi limiti mavjud va chekli bo’lsa, unga f(x) funksiyaning a dan b gacha aniq integrali deyiladi va u

ko’rinishida yoziladi.
Bu holda f(x) funksiya kesmada integrallanuvchi deyiladi. f(x) funksiyaning integrallanuvchi bo’lishi uchun u kesmada uzluksiz bo’lishi yoki chekli sondagi uzilishlarga ega bo’lishi kifoyadir.
Aniq integral quyidagi bir qator xossalarga ega:
1. ;
. , agar bo’lsa;
;
.
Agar kesmada va integrallanuvchi bo’lsa, u holda
tengsizlik o’rinli bo’ladi;
6. Agar kesmada va funksiyalar integrallanuvchi hamda bo’lsa, u holda ularning aniq integrallari uchun tengsizlik o’rinli bo’ladi.
Agar va f(x) funksiya , kesmalarda integrallanuvchi bo’lsa, unda kesmada ham integrallanuvchi va tenglik o’rinli bo’ladi.
Agar kesmada (a Agar funksiya kesmada integrallanuvchi bo’lsa, u holda f(x) funksiya ham bu kesmada integrallanuvchi va quyidagi tengsizlik o’rinli bo’ladi:
10. Agar f(x) funksiya kesmada uzluksiz bo’lsa, u holda bu kesmada shunday 𝜉 nuqta mavjud bo’ladiki, unda

tenglik o’rinli bo’ladi.
Agar F(x) uzluksiz f(x) funksiyaning biror boshlang’ich funksiyasi bo’lsa, u holda

tenglik o’rinli bo’ladi. Bu tenglik aniq integralni hisoblashning Nyuton-Leybnis formulasi deyiladi.
Ba’zi aniq integrallarni hisoblashda bo’laklab integrallash formulasi deb ataluvchi

formuladan foydalaniladi.
Berilgan uzluksiz funkisiyadan kesma bo’yicha olingan

aniq integiralni ba’zi hollarda biror differensiallanuvchi funksiya orqali “eski” x o’zgaruvchidan “yangi” t o’zgaruchiga o’tish usulida foydalanib hisoblash mumkin bo’ladi. Bunda quyidagi shartlar qo’yiladi:
1. (
2. (t) va funksiyalar t [ ] kesmada uzluksiz:
3. [ murakkab funksiya [ kesmada aniqlangan va uzluksiz.
Bu shartlarda ushbu formula o’rinli bo’ladi:

Bu formula aniq integralda o’zgaruvchini almashtirish formulasi deyiladi.

Download 424.02 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling