Data labeling - Ko'pincha zamonaviy AI modellari "nazorat ostida o'rganish“ – (supervised learning) orqali o'qitiladi. Bu shuni anglatadiki, odamlar katta hajmdagi va xatolarga olib keladishi mumkin bo'lgan asosiy ma'lumotlarni belgilashi va toifalashlari kerak.
Obtain huge training datasets - CNN kabi chuqur o’qitish usullari ba'zi hollarda tibbiyot va boshqa sohalardagi mutaxassislarning bilimlariga mos ishlaydi. Hozirgi vaqtda mashina o'qitish jarayoni nafaqat ma’lumotar aniq bo’lishini, balki yetarlicha keng va universal bo'lgan o'quv ma'lumot to'plamlarini talab qiladi.
Explain a problem - Katta va murakkab modellarni tushuntirish va unig xususiyatlarini aniqlash qiyin hisoblanadi. Bunday holatlarda aniq qarorlarni qabul qilishda xatoliklarga yo’l qo’yilishi mumkin.
Foydalanilgan adabiyotlar
Aurelian Geron, Hands on Machine Learning with Scikit-Learn
Keras&Tensorflow // Second edition Concepts, Tools, and Techniques to Build Intelligent Systems, 2019, 510 pages
Primoz Potocnik, Neural Networks: MATLAB examples // Neural Networks course (practical examples)© 2012
https://www.guru99.com/deep-learning-tutorial.html
https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_de ep_neural_networks.htm
https://www.mathworks.com/help/deeplearning/examples/create-simple-deeplearning-network-for-classification.html
Do'stlaringiz bilan baham: |