Reja: Markazli egri chiziqning tenglamasini soddalashtirish
Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqlarni aniqlash va sinflarga ajratish
Download 253.5 Kb.
|
1 2
Bog'liqMAVZU 5 ikki tartibli
- Bu sahifa navigatsiya:
- Mustaqil yechish uchun topshiriqlar.
Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqlarni aniqlash va sinflarga ajratish.π₯β² = π₯ + π {π¦β² = π¦ + π parallel koβchirish formulasi. π₯ = π₯β²πππ πΌ β π¦β²π πππΌ burish formulasi. { π¦ = π₯ β²π πππΌ + π¦ β²πππ πΌ π₯ = π₯β²πππ πΌ β π¦β²π πππΌ + π {π¦ = π¦β²πππ πΌ + π₯β²π πππΌ + π parallel koβchirish va burish birgalikda harakat deyiladi. π11π₯2 + π22π¦2 + 2π10π₯ + 2π20π¦ + 2π12π₯π¦ + π00 = 0 shu ifoda bilan berilgan tenglama ikkinchi tartibli chiziqning umumiy tenglamasi deyiladi. Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqni qanday chiziq ekanligini aniqlash uchun quyidagi ishlarni bajaramiz. π₯β² = π₯ + π {π¦β² = π¦ + π π11(π₯β² + π)2 + π22(π¦β² + π)2 + 2π10(π₯β² + π) + 2π20(π¦β² + π) + 22 10 +2π12(π₯β² + π)(π¦β² + π) + π00 = 0 βΉ π11 (π₯β²2 + 2ππ₯β² + π2) + π (π¦β²2 + 2ππ¦β² + π2) + (2π π₯β² + 2ππ10) + +2π20π¦β² + 2π20π + 2π12(π₯β²π¦β² + ππ¦β² + ππ₯β² + ππ) + π00 = 0 βΉ π11π₯β²2 + 2ππ11π₯β² + π2π11 + π22π¦β²2 + 2π¦β²ππ22 + π22π2 + +2π10π₯β² + 2ππ10 + 2π20π¦β² + 2π20π + 2π12π₯β²π¦β² + +2π12ππ¦β² + 2π12ππ₯β² + 2π12ππ + π00 = 0 {2π11π + 2π12π = β2π10 2π22π + 2π12π = β2π20 π11π₯β²2 + π22π¦β²2 π₯ = π₯β²β²πππ πΌ β π¦β²β²π πππΌ + π΄00 = 0 βΉ {π¦ = π₯β²β²π πππΌ + π¦β²β²πππ πΌ kelib chiqadi. π11(π₯β²β²πππ πΌ β π¦β²β²π πππΌ)2 + π22(π₯β²β²π πππΌ + π¦β²β²πππ πΌ)2 + +2π12(π₯β²β²πππ πΌ β π¦β²β²π πππΌ)(π₯β²β²π πππΌ + π¦β²β²πππ πΌ) + π΄00 = 0 π11(π₯β²β²2πππ 2πΌ β 2π11π₯β²β²πππ πΌπ¦β²β²π πππΌ + π¦β²β²2π ππ2πΌ) + +π22(π₯β²β²2π ππ2πΌ + 2π₯β²β²π πππΌπ¦β²β²πππ πΌ + π¦β²β²2πππ 2πΌ) + π΄00 = 0 βΉ π11π₯β²β²2πππ 2πΌ β 2π11π₯β²β²πππ πΌπ¦β²β²π πππΌ + π11π¦β²β²2π ππ2πΌ + +π22π¦β²β²2πππ 2πΌ + 2π13π₯β²β²2π πππΌπππ πΌ + 2π12π₯β²β²2π¦β²β²2πππ 2πΌ β β2π12π₯β²β²π¦β²β²π ππ2πΌ β 2π12π¦β²β²2π πππΌπππ πΌ + π΄00 = 0 βΉ 2 (π11πππ 2πΌ + π22π ππ2πΌ + 2π12π πππΌπππ πΌ)π₯β²β² + 2 +(π11π ππ2πΌ + π22πππ 2πΌ β 2π12π πππΌπππ πΌ)π¦β²β² + +(β2π11π πππΌπππ πΌ + 2π22π πππΌπππ πΌ + 2π12πππ 2πΌ β 2π12π ππ2πΌ)π₯β²β²π¦β²β² + π΄00 = 0 (π22 β π11)π ππ2πΌ + 2π12πππ 2πΌ = 0 βΉ π‘π2πΌ = 2π12 π11 β π22 (5.42)
π΄11π₯β²2 + π΄22π¦β²2 + π΄00 = 0 tenglamani xususiy hollarini qaraymiz: 1) π΄11 > 0, π΄22 > 0, π΄00 < 0 boβlsa, ellips; 2) π΄11 < 0, π΄22 < 0, π΄00 > 0 boβlsa, ellips; 3) π΄11 π΄22 < 0, π΄00 > 0 boβlsa, giperbola; 4) π΄11 π΄22 < 0, π΄00 < 0 boβlsa, giperbola; 5) π΄11 π΄22 < 0, π΄00 = 0 boβlsa, nuqta; 6) π΄11 = 0, π΄22 π΄00 < 0, π΄00 > 0 boβlsa, parallel toβgβri chiziqlar hosil boβladi. 1-MisΠΎl. Quyidagi tenglamaning geometrik maβnosini tekshirib, uning kanonik tenglamasi tuzilsin: 5π₯2 + 4π₯π¦ + 8π¦2 β 32π₯ β 56π¦ + 80 = 0. Yechish: Egri chiziqning jinsini aniqlash uchun β va π ni hisoblashga toβgβri keladi: 5 2 β 16 β= | 2 8 β 28 | = β1296, π΄ β β< 0. β16 β 28 80 π = π΅2 β π΄πΆ = 4 β 5 β 8 = β36 < 0. Demak, berilgan tenglama haqiqiy ellipsdan iborat. Uning kanonik tenglamasining koβrinishi: π΄1 π₯2 + πΆ1 π¦2 = β , π π΄1 1 = 2 = 1 [π΄ + πΆ + β(π΄ β πΆ)2 + 4π΅2]= 2 [5 + 8 + β(5 β 8)2 + 4 β 22] = 9; 1 πΆ1 = 1 [π΄ + πΆ β β(π΄ β πΆ)2 + 4π΅2] = 2 = [5 + 8 β β(5 β 8)2 + 4 β 22] = 4; 2 β β1296 = π β36 = 36. Demak, ellipsning kanonik tenglamasi 9π₯2 + 4π¦2 = 36 yoki π₯2 4 π¦2 + 9 = 1. 2-MisΠΎl. ππ₯ oβqi parabolaning simmetriya oβqi boβlib, uning uchi koordinatalar boshida yotadi. Parabola uchidan fokusigacha boβlgan masofa 4 birlikka tΠ΅ng. Parabola va uning direktrisasi tenglamasini toping. Yechish: Dastlab, masala shartiga asosan, parabolaning π parametrini topamiz: |ππΉ| = 4 βΉ π/2 = 4 βΉ π = 8. Unda, (5.39) formulaga asosan, parabola tenglamasini topamiz: π¦2 = 2ππ₯ βΉ π¦2 = 2 β 8π₯ = 16π₯. Bu yerdan direktrisa tenglamasi π₯ = βπ/2 βΉ π₯ = β4 ekanligini koβramiz. Shuni taβkidlab oβtish kerakki, π¦ = ππ₯2 + ππ₯ + π (π β 0) kvadrat uchhadning grafigi uchi koordinatalari x0 ο½ ο b , 2a ο½ 4ac ο b2 0 4a boβlgan π0(π₯0; π¦0) nuqtada, simmetriya oβqi esa ππ¦ oβqiga parallel va π₯ = βπ/2π tenglamaga ega boβlgan vertikal toβgβri chiziqdan tashkil topgan paraboladan iboratdir. Agar π > 0 boβlsa, parabola yuqoriga, π < 0 boβlsa, pastga yoβnalgan boβladi. Mustaqil yechish uchun topshiriqlar.QuyidΠ°gi gipΠ΅rbΠΎlΠ°lΠ°rning tΠ΅nglΠ°mΠ°lΠ°ri sΠΎddΠ° shΠ°klgΠ° kΠ΅ltirilsin: 1) 9π₯2 β 25π¦2 β 18π₯ β 100π¦ β 316 = 0; 2) 5π₯2 β 6π¦2 + 10π₯ β 12π¦ β 31 = 0; 3) π₯2 β 4π¦2 + 6π₯ + 5 = 0. MΠ°rkΠ°zlΠ°rining kΠΎΠΎrdinΠ°tΠ°lΠ°ri vΠ° oβqlΠ°ri tΠΎpilsin. Quyidagi tenglamalar bilan qanday egri chiziqlar berilganligi tekshirilsin: 1) π₯2 β 2π₯π¦ + 2π¦2 β 4π₯ β 6π¦ + 3 = 0; 2) π₯2 β 2π₯π¦ β 2π¦2 β 4π₯ β 6π¦ + 3 = 0; 3) π₯2 β 2π₯π¦ + π¦2 β 4π₯ β 6π¦ + 3 = 0; 4) π₯2 β 2π₯π¦ + 2π¦2 β 4π₯ β 6π¦ + 29 = 0; 5) π₯2 β 2π₯π¦ β 2π¦2 β 4π₯ β 6π¦ β 13 = 0. 3 Quyidagi egri chiziqlarning turlari aniqlansin: 1) π₯2 + 6π₯π¦ + π¦2 + 6π₯ + 2π¦ β 1 = 0; 2) 3π₯2 β 2π₯π¦ + 3π¦2 + 4π₯ + 4π¦ β 4 = 0; 3) π₯2 β 4π₯π¦ + 3π¦2 + 2π₯ β 2π¦ = 0; 4) π¦2 + 5π₯π¦ β 14π₯2 = 0; 5) π₯2 β π₯π¦ β π¦2 β π₯ β π¦ = 0. Berilgan tenglamalarning chap tomonlarini koβpaytuvchilarga ajratishdan foydalanib, tenglamalarning geometrik maβnosi koβrsatilsin: 1) π₯π¦ β ππ₯ β ππ¦ + ππ = 0; 2) π₯2 β 2π₯π¦ + 5π₯ = 0; 3) π₯2 β 4π₯π¦ + 4π¦2 = 0; 4) 9π₯2 + 30π₯π¦ + 25π¦2 = 0; 5) 4π₯2 β 12π₯π¦ + 9π¦2 β 25 = 0. 5.1.5. π¦2 β π₯π¦ β 5π₯ + 7π¦ + 10 = 0 tenglamaning ikki (qoβsh) toβgβri chiziqni ifodalashi tekshirilsin va bu toβgβri chiziqlardan har birining tenglamasi topilsin. Quyidagi tenglama bilan berilgan ikkita toβgβri chiziqdan har birining tenglamasi topilsin: 1) 21π₯2 + π₯π¦ β 10π¦2 = 0; 2) π₯2 + 2π₯π¦ + π¦2 + 2π₯ + 2π¦ β 4 = 0; 3) π¦2 β 4π₯π¦ β 5π¦2 + 5π₯ β π¦ = 0; 4) 4π₯2 β 4π₯π¦ + π¦2 + 12π₯ β 6π¦ + 9 = 0. Egri chiziqlar tekshirilsin: 1) 2π₯2 + 3π₯π¦ β 5π¦2 = 0; 2) π₯2 + 4π₯π¦ + 4π¦2 = 0; 3) 10π₯2 β 7π₯π¦ + π¦2 = 0; 4) 5π₯2 β 4π₯π¦ + π¦2 = 0. Invariantlardan foydalanib, quyidagi egri chiziq tenglamalari sodda shaklga keltirilsin: 1) π₯2 + 2π₯π¦ β π¦2 + 8π₯ + 4π¦ β 8 = 0; 2) 7π₯2 β 24π₯π¦ β 38π₯ + 24π¦ + 175 = 0; 3) 5π₯2 + 8π₯π¦ + 5π¦2 β 18π₯ β 18π¦ + 9 = 0; 4) 5π₯2 + 12π₯π¦ β 22π₯ β 12π¦ β 19 = 0; 5) 6π₯π¦ + 8π¦2 β 12π₯ β 26π¦ + 11 = 0. Bu egri chiziqlarning hammasi toβgβri burchakli koordinatalar sistemasiga nisbatan berilgan. Invariantlardan foydalanib, quyidagi parabolalarning tenglamalari soddalashtirilsin: 1) π₯2 β 2π₯π¦ + π¦2 β 10π₯ β 6π¦ + 25 = 0; 2) 4π₯2 β 4π₯π¦ + π¦2 β 2π₯ β 14π¦ + 7 = 0; 3) π₯2 β 2π₯π¦ + π¦2 β π₯ β 2π¦ + 3 = 0; 4) 4π₯2 β 4π₯π¦ + π¦2 β π₯ β 2 = 0. π = π 2 boβlgan hol uchun. Quyidagi egri chiziqlarning tenglamalari soddalashtirilsin: 1) π₯2 β 3π₯π¦ + π¦2 + 1 = 0, π = 600; 2) 2π₯2 + 2π¦2 β 2π₯ β 6π¦ + 1 = 0, π = 600; 3) 4π₯2 β 4π₯π¦ + π¦2 β 4π₯ β 4π¦ + 7 = 0, π = 1200. 5.1.11. Invariantlardan foydalanib, 8π¦2 + 6π₯π¦ β 12π₯ β 26π¦ + 11 = 0 giperbolaning asimptotalariga nisbatan tenglamasi yozilsin. π = 900. Toβgβri burchakli koordinatalar sistemasiga nisbatan quyidagi tenglamalar bilan berilgan giperbolalarning asimptotalariga nisbatan yozilgan tenglamasi topilsin: 1) 2π₯2 + 3π₯π¦ β 2π¦2 β 8π₯ β 11π¦ = 0; 2) 4π₯2 + 2π₯π¦ β π¦2 + 6π₯ + 2π¦ + 3 = 0; 3) π¦2 β 2π₯π¦ β 4π₯ β 2π¦ β 2 = 0. Biror toβgβri burchakli koordinatalar sistemasiga nisbatan egri chiziq 5π₯2 + 2π₯π¦ β 22π₯ β 12π¦ β 19 = 0 tenglama bilan ifodalanadi. Bu egri chiziqning oβz uchiga nisbatan tenglamasi topilsin. Quyidagi tenglamalarning har biri ellipsni ifodalasa, uning markazi boβlgan Π‘ nuqtaning koordinatasi, yarim oβqi, ekssentrisiteti va direktrisasi tenglamalarini tuzing: 1) 5π₯2 + 9π¦2 β 30π₯ + 18π¦ + 9 = 0; 2) 16π₯2 + 25π¦2 + 32π₯ β 100π¦ β 284 = 0; 3) 4π₯2 + 3π¦2 β 8π₯ + 12π¦ β 32 = 0. Quyidagi tenglamalar giperbola hosil qilishini tekshirib va uning markazi boβlgan C nuqtaning koordinatasini, yarim oβqlarini, ekssentrisitetini, asimptota va direktrisa tenglamalarini tuzing: 1) 16π₯2 β 9π¦2 β 64π₯ β 54π¦ β 161 = 0; 2) 9π₯2 β 16π¦2 + 90π₯ + 32π¦ β 367 = 0; 3) 16π₯2 β 9π¦2 β 64π₯ β 18π¦ + 199 = 0. Quyidagi chiziqlardan qaysilari: 1) yagona markazga; 2) koβp markazlarga; 3) markazga ega emasligini aniqlang. 1) 3π₯2 β 4π₯π¦ β 2π¦2 + 3π₯ β 12π¦ β 7 = 0; 2) 4π₯2 + 5π₯π¦ + 3π¦2 β π₯ + 9π¦ β 12 = 0; 3) 4π₯2 β 4π₯π¦ + π¦2 β 6π₯ + 8π¦ + 13 = 0; 4) 4π₯2 β 4π₯π¦ + π¦2 β 12π₯ + 6π¦ β 11 = 0; 5) π₯2 β 2π₯π¦ + 4π¦2 + 5π₯ β 7π¦ + 12 = 0; 6) π₯2 β 2π₯π¦ + π¦2 β 6π₯ + 6π¦ β 3 = 0; 7) π₯2 β 20π₯π¦ + 25π¦2 β 14π₯ + 2π¦ β 15 = 0; 8) 4π₯2 β 6π₯π¦ β 9π¦2 + 3π₯ β 7π¦ + 12 = 0. Quyidagi berilgan chiziqlar markazga ega boβlsa, ularning markaziy nuqtalarini toping: 1) 3π₯2 + 5π₯π¦ + π¦2 β 8π₯ β 11π¦ β 7 = 0; 2) 5π₯2 + 4π₯π¦ + 2π¦2 + 20π₯ + 20π¦ β 18 = 0; 3) 9π₯2 β 4π₯π¦ β 7π¦2 β 12 = 0; 4) 2π₯2 β 6π₯π¦ + 5π¦2 + 22π₯ β 36π¦ + 11 = 0. Quyidagi har bir chiziqning koβp markazli boβlishini tekshirib, ularning har biri uchun geometrik markazini aniqlaydigan tenglamasini tuzing: 1) π₯2 β 6π₯π¦ + 9π¦2 β 12π₯ + 36π¦ + 20 = 0; 2) 4π₯2 + 4π₯π¦ + π¦2 β 8π₯ β 4π¦ β 21 = 0; 3) 25π₯2 β 10π₯π¦ + π¦2 + 40π₯ β 8π¦ + 7 = 0. Quyidagi tenglamalar markaziy chiziqni ifodalashini tekshirib, ularning har birini koordinata boshiga koβchiruvchi tenglamasini tuzing: 1) 3π₯2 β 6π₯π¦ + 2π¦2 β 4π₯ + 2π¦ + 1 = 0; 2) 6π₯2 + 4π₯π¦ + π¦2 + 4π₯ β 2π¦ + 2 = 0; 3) 4π₯2 + 6π₯π¦ + π¦2 β 10π₯ β 10 = 0; 4) 4π₯2 + 2π₯π¦ + 6π¦2 + 6π₯ β 10π¦ + 9 = 0. Ρ va ΠΏ ning qanday qiymatlarida ππ₯2 + 12π₯π¦ + 9π¦2 + 4π₯ + ππ¦ β 13 = 0 tenglama quyidagilarni aniqlaydi: Π°) markaziy chiziqni; Π±) markazsiz chiziqni; Π²) koβp markazli chiziqlarni. Parallel koβchirish yoβli bilan quyidagi tenglamalarning har birining turini aniqlab, sodda holga keltiring. Qanday geometrik shaklni ifodalashini toping. Eski va yangi koordinatalar sistemasida grafigini chizing. 1) 4π₯2 + 9π¦2 β 40π₯ + 36π¦ + 100 = 0; 2) 9π₯2 β 16π¦2 β 54π₯ β 64π¦ β 127 = 0; 3) 9π₯2 + 4π¦2 + 18π₯ β 8π¦ + 49 = 0; Quyidagi berilgan tenglamalarning har birini eng oddiy shaklga keltirib, ularning turini, qanday geometrik shaklni tasvirlashini, grafiklarning eski va yangi koordinata oβqlariga nisbatan joylashishini aniqlang: 1) 32π₯2 + 52π₯π¦ β 7π¦2 + 180 = 0; 2) 5π₯2 β 6π₯π¦ + 5π¦2 β 32 = 0; 3) 17π₯2 β 12π₯π¦ + 8π¦2 = 0; 4) 5π₯2 + 24π₯π¦ β 5π¦2 = 0; 5) 5π₯2 β 6π₯π¦ + 5π¦2 + 8 = 0. Quyidagi berilgan tenglamalarning har birini eng oddiy shaklga keltirib, ularning turini, qanday geometrik shaklni tasvirlashini, grafiklarning eski va yangi koordinata oβqlariga nisbatan joylashishini aniqlang: 1) 14π₯2 + 24π₯π¦ + 21π¦2 β 4π₯ + 18π¦ β 139 = 0; 2) 11π₯2 β 20π₯π¦ β 4π¦2 β 20π₯ β 8π¦ + 1 = 0; 3) 7π₯2 + 60π₯π¦ + 32π¦2 β 14π₯ β 60π¦ + 7 = 0; 4) 50π₯2 β 8π₯π¦ + 35π¦2 + 100π₯ β 8π¦ + 67 = 0; Quyidagi tenglamalarni koordinatalar sistemasini almashtirmasdan, har biri ellipsni ifodalashini va uning yarim oβqlardagi qiymatlarini toping: 1) 41π₯2 + 24π₯π¦ + 9π¦2 + 24π₯ + 18π¦ β 36 = 0; 2) 8π₯2 + 4π₯π¦ + 5π¦2 + 16π₯ + 4π¦ β 28 + 9 = 0; 3) 13π₯2 + 18π₯π¦ + 37π¦2 β 26π₯ β 18π¦ + 3 = 0; 4) 13π₯2 + 10π₯π¦ + 13π¦2 + 46π₯ + 62π¦ + 13 = 0. Koordinatalar sistemasini almashtirmasdan quyidagi tenglamalar bitta nuqtani ifodalashini isbotlang. 1) 5π₯2 β 6π₯π¦ + 2π¦2 β 2π₯ + 2 = 0; 2) π₯2 + 2π₯π¦ + 2π¦2 + 6π¦ + 9 = 0; 3) 5π₯2 + 4π₯π¦ + π¦2 β 6π₯ β 2π¦ + 2 = 0; 4) π₯2 β 6π₯π¦ + 10π¦2 + 10π₯ β 32π¦ + 26 = 0. Koordinatalar sistemasini almashtirmasdan, har biri giperbolani ifodalasa, uning yarim oβqlarining qiymatini toping: 1) 4π₯2 + 24π₯π¦ + 11π¦2 + 64π₯ + 42π¦ + 51 = 0; 2) 12π₯2 + 26π₯π¦ + 12π¦2 β 52π₯ β 48π¦ + 73 = 0; 3) 3π₯2 + 4π₯π¦ β 12π₯ + 16 = 0; 4) π₯2 β 6π₯π¦ β 7π¦2 + 10π₯ β 30π¦ + 23 = 0. Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri kesishgan toβgβri chiziqlar juftligini (degenerat giperbola) belgilashini aniqlang va ularning tenglamalarini toping: 1) 3π₯2 + 4π₯π¦ + π¦2 β 2π₯ β 1 = 0; 2) 3π₯2 β 6π₯π¦ + 8π¦2 β 4π¦ β 4 = 0; 3) π₯2 β 4π₯π¦ + 3π¦2 = 0; 4) π₯2 + 4π₯π¦ + 3π¦2 β 6π₯ β 12π¦ + 9 = 0. Quyidagi tenglamalarning har biri parabolik ekanligini aniqlang; ularning har birini eng oddiy shaklga keltiring; ular qanday geometrik tasvirlarni belgilashlarini aniqlang: 1) 9π₯2 + 24π₯π¦ + 16π¦2 β 18π₯ + 226π¦ + 209 = 0; 2) π₯2 β 2π₯π¦ + π¦2 β 12π₯ + 12π¦ β 14 = 0; 3) 4π₯2 + 12π₯π¦ + 9π¦2 β 4π₯ β 6π¦ + 1 = 0. Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri parabolani aniqlaganligini aniqlang va ushbu parabola parametrini toping: 1) 9π₯2 + 24π₯π¦ + 16π¦2 β 120π₯ + 90π¦ = 0; 2) 9π₯2 β 24π₯π¦ + 16π¦2 β 54π₯ β 178π¦ + 181 = 0; 3) π₯2 β 2π₯π¦ + π¦2 + 6π₯ β 14π¦ + 29 = 0; 4) 9π₯2 β 6π₯π¦ + π¦2 β 50π₯ + 50π¦ β 275 = 0. Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri bir juft parallel toβgβri chiziqni belgilashini aniqlang va ularning tenglamalarini toping: 1) 4π₯2 + 4π₯π¦ + π¦2 β 12π₯ β 6π¦ + 5 = 0; 2) 4π₯2 β 12π₯π¦ + 9π¦2 + 20π₯ β 30π¦ β 11 = 0; 3) 25π₯2 β 10π₯π¦ + π¦2 + 10π₯ β 2π¦ β 15 = 0. Download 253.5 Kb. Do'stlaringiz bilan baham: |
1 2
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling