Reja: Markazli egri chiziqning tenglamasini soddalashtirish


Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqlarni aniqlash va sinflarga ajratish


Download 253.5 Kb.
bet2/2
Sana25.07.2023
Hajmi253.5 Kb.
#1662478
1   2
Bog'liq
MAVZU 5 ikki tartibli

Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqlarni aniqlash va sinflarga ajratish.


π‘₯β€² = π‘₯ + π‘Ž
{𝑦′ = 𝑦 + π‘Ž
parallel koβ€˜chirish formulasi.
π‘₯ = π‘₯β€²π‘π‘œπ‘ π›Ό βˆ’ 𝑦′𝑠𝑖𝑛𝛼

burish formulasi.


{
𝑦 = π‘₯
′𝑠𝑖𝑛𝛼 + 𝑦
β€²π‘π‘œπ‘ π›Ό

π‘₯ = π‘₯β€²π‘π‘œπ‘ π›Ό βˆ’ 𝑦′𝑠𝑖𝑛𝛼 + π‘Ž
{𝑦 = π‘¦β€²π‘π‘œπ‘ π›Ό + π‘₯′𝑠𝑖𝑛𝛼 + 𝑏
parallel koβ€˜chirish va burish birgalikda harakat deyiladi.
π‘Ž11π‘₯2 + π‘Ž22𝑦2 + 2π‘Ž10π‘₯ + 2π‘Ž20𝑦 + 2π‘Ž12π‘₯𝑦 + π‘Ž00 = 0
shu ifoda bilan berilgan tenglama ikkinchi tartibli chiziqning umumiy
tenglamasi deyiladi.
Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqni qanday chiziq ekanligini aniqlash uchun quyidagi ishlarni bajaramiz.
π‘₯β€² = π‘₯ + π‘Ž
{𝑦′ = 𝑦 + π‘Ž
π‘Ž11(π‘₯β€² + π‘Ž)2 + π‘Ž22(𝑦′ + 𝑏)2 + 2π‘Ž10(π‘₯β€² + π‘Ž) + 2π‘Ž20(𝑦′ + 𝑏) +

22

10
+2π‘Ž12(π‘₯β€² + π‘Ž)(𝑦′ + 𝑏) + π‘Ž00 = 0 ⟹

π‘Ž11
(π‘₯β€²2 + 2π‘Žπ‘₯β€² + π‘Ž2) + π‘Ž
(𝑦′2 + 2𝑏𝑦′ + 𝑏2) + (2π‘Ž
π‘₯β€² + 2π‘Žπ‘Ž10) +

+2π‘Ž20𝑦′ + 2π‘Ž20𝑏 + 2π‘Ž12(π‘₯′𝑦′ + π‘Žπ‘¦β€² + 𝑏π‘₯β€² + π‘Žπ‘) + π‘Ž00 = 0 ⟹
π‘Ž11π‘₯β€²2 + 2π‘Žπ‘Ž11π‘₯β€² + π‘Ž2π‘Ž11 + π‘Ž22𝑦′2 + 2π‘¦β€²π‘π‘Ž22 + π‘Ž22𝑏2 +
+2π‘Ž10π‘₯β€² + 2π‘Žπ‘Ž10 + 2π‘Ž20𝑦′ + 2π‘Ž20𝑏 + 2π‘Ž12π‘₯′𝑦′ +
+2π‘Ž12π‘Žπ‘¦β€² + 2π‘Ž12𝑏π‘₯β€² + 2π‘Ž12π‘Žπ‘ + π‘Ž00 = 0

{2π‘Ž11π‘Ž + 2π‘Ž12𝑏 = βˆ’2π‘Ž10 2π‘Ž22𝑏 + 2π‘Ž12π‘Ž = βˆ’2π‘Ž20

π‘Ž11π‘₯β€²2
+ π‘Ž22𝑦′2
π‘₯ = π‘₯β€²β€²π‘π‘œπ‘ π›Ό βˆ’ 𝑦′′𝑠𝑖𝑛𝛼
+ 𝐴00 = 0 ⟹ {𝑦 = π‘₯′′𝑠𝑖𝑛𝛼 + π‘¦β€²β€²π‘π‘œπ‘ π›Ό

kelib chiqadi.
π‘Ž11(π‘₯β€²β€²π‘π‘œπ‘ π›Ό βˆ’ 𝑦′′𝑠𝑖𝑛𝛼)2 + π‘Ž22(π‘₯′′𝑠𝑖𝑛𝛼 + π‘¦β€²β€²π‘π‘œπ‘ π›Ό)2 +
+2π‘Ž12(π‘₯β€²β€²π‘π‘œπ‘ π›Ό βˆ’ 𝑦′′𝑠𝑖𝑛𝛼)(π‘₯′′𝑠𝑖𝑛𝛼 + π‘¦β€²β€²π‘π‘œπ‘ π›Ό) + 𝐴00 = 0
π‘Ž11(π‘₯β€²β€²2π‘π‘œπ‘ 2𝛼 βˆ’ 2π‘Ž11π‘₯β€²β€²π‘π‘œπ‘ π›Όπ‘¦β€²β€²π‘ π‘–π‘›π›Ό + 𝑦′′2𝑠𝑖𝑛2𝛼) +
+π‘Ž22(π‘₯β€²β€²2𝑠𝑖𝑛2𝛼 + 2π‘₯β€²β€²π‘ π‘–π‘›π›Όπ‘¦β€²β€²π‘π‘œπ‘ π›Ό + 𝑦′′2π‘π‘œπ‘ 2𝛼) + 𝐴00 = 0 ⟹
π‘Ž11π‘₯β€²β€²2π‘π‘œπ‘ 2𝛼 βˆ’ 2π‘Ž11π‘₯β€²β€²π‘π‘œπ‘ π›Όπ‘¦β€²β€²π‘ π‘–π‘›π›Ό + π‘Ž11𝑦′′2𝑠𝑖𝑛2𝛼 +
+π‘Ž22𝑦′′2π‘π‘œπ‘ 2𝛼 + 2π‘Ž13π‘₯β€²β€²2π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Ό + 2π‘Ž12π‘₯β€²β€²2𝑦′′2π‘π‘œπ‘ 2𝛼 βˆ’
βˆ’2π‘Ž12π‘₯′′𝑦′′𝑠𝑖𝑛2𝛼 βˆ’ 2π‘Ž12𝑦′′2π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Ό + 𝐴00 = 0 ⟹
2
(π‘Ž11π‘π‘œπ‘ 2𝛼 + π‘Ž22𝑠𝑖𝑛2𝛼 + 2π‘Ž12π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Ό)π‘₯β€²β€² +
2
+(π‘Ž11𝑠𝑖𝑛2𝛼 + π‘Ž22π‘π‘œπ‘ 2𝛼 βˆ’ 2π‘Ž12π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Ό)𝑦′′ +

+(βˆ’2π‘Ž11π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Ό + 2π‘Ž22π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Ό + 2π‘Ž12π‘π‘œπ‘ 2𝛼
βˆ’ 2π‘Ž12𝑠𝑖𝑛2𝛼)π‘₯′′𝑦′′ + 𝐴00 = 0 (π‘Ž22 βˆ’ π‘Ž11)𝑠𝑖𝑛2𝛼 + 2π‘Ž12π‘π‘œπ‘ 2𝛼 = 0 ⟹
𝑑𝑔2𝛼 = 2π‘Ž12
π‘Ž11 βˆ’ π‘Ž22

(5.42)


𝐴11π‘₯β€²2 + 𝐴22𝑦′2 + 𝐴00 = 0 tenglamani xususiy hollarini qaraymiz:
1) 𝐴11 > 0, 𝐴22 > 0, 𝐴00 < 0 boβ€˜lsa, ellips;
2) 𝐴11 < 0, 𝐴22 < 0, 𝐴00 > 0 boβ€˜lsa, ellips;
3) 𝐴11 𝐴22 < 0, 𝐴00 > 0 boβ€˜lsa, giperbola;
4) 𝐴11 𝐴22 < 0, 𝐴00 < 0 boβ€˜lsa, giperbola;
5) 𝐴11 𝐴22 < 0, 𝐴00 = 0 boβ€˜lsa, nuqta;
6) 𝐴11 = 0, 𝐴22 𝐴00 < 0, 𝐴00 > 0 boβ€˜lsa, parallel toβ€˜gβ€˜ri chiziqlar hosil boβ€˜ladi.
1-MisΠΎl. Quyidagi tenglamaning geometrik ma’nosini tekshirib, uning kanonik tenglamasi tuzilsin:
5π‘₯2 + 4π‘₯𝑦 + 8𝑦2 βˆ’ 32π‘₯ βˆ’ 56𝑦 + 80 = 0.
Yechish: Egri chiziqning jinsini aniqlash uchun βˆ† va 𝑀 ni hisoblashga toβ€˜gβ€˜ri keladi:
5 2 βˆ’ 16

βˆ†= |
2 8 βˆ’ 28 | = βˆ’1296, 𝐴 βˆ™ βˆ†< 0.
βˆ’16 βˆ’ 28 80

𝑀 = 𝐡2 βˆ’ 𝐴𝐢 = 4 βˆ’ 5 βˆ™ 8 = βˆ’36 < 0.
Demak, berilgan tenglama haqiqiy ellipsdan iborat. Uning kanonik tenglamasining koβ€˜rinishi:

𝐴1
π‘₯2 + 𝐢1
𝑦2 = βˆ† ,
𝑀

𝐴1
1
=
2
= 1 [𝐴 + 𝐢 + √(𝐴 βˆ’ 𝐢)2 + 4𝐡2]=
2

[5 + 8 + √(5 βˆ’ 8)2 + 4 βˆ™ 22] = 9;


1

𝐢1 =
1
[𝐴 + 𝐢 βˆ’ √(𝐴 βˆ’ 𝐢)2 + 4𝐡2] =
2




= [5 + 8 βˆ’ √(5 βˆ’ 8)2 + 4 βˆ™ 22] = 4;
2

βˆ† βˆ’1296
=
𝑀 βˆ’36
= 36.

Demak, ellipsning kanonik tenglamasi
9π‘₯2 + 4𝑦2 = 36

yoki


π‘₯2



4


𝑦2
+
9

= 1.



2-MisΠΎl. 𝑂π‘₯ oβ€˜qi parabolaning simmetriya oβ€˜qi boβ€˜lib, uning uchi
koordinatalar boshida yotadi. Parabola uchidan fokusigacha boβ€˜lgan masofa 4 birlikka tΠ΅ng. Parabola va uning direktrisasi tenglamasini toping.
Yechish: Dastlab, masala shartiga asosan, parabolaning 𝑝
parametrini topamiz:
|𝑂𝐹| = 4 ⟹ 𝑝/2 = 4 ⟹ 𝑝 = 8.
Unda, (5.39) formulaga asosan, parabola tenglamasini topamiz:
𝑦2 = 2𝑝π‘₯ ⟹ 𝑦2 = 2 βˆ™ 8π‘₯ = 16π‘₯.
Bu yerdan direktrisa tenglamasi π‘₯ = βˆ’π‘/2 ⟹ π‘₯ = βˆ’4 ekanligini koβ€˜ramiz.
Shuni ta’kidlab oβ€˜tish kerakki, 𝑦 = π‘Žπ‘₯2 + 𝑏π‘₯ + 𝑐 (π‘Ž β‰  0) kvadrat uchhadning grafigi uchi koordinatalari

x0 ο€½ ο€­ b ,
2a

  1. ο€½ 4ac ο€­ b2 0 4a

boβ€˜lgan 𝑀0(π‘₯0; 𝑦0) nuqtada, simmetriya oβ€˜qi esa 𝑂𝑦 oβ€˜qiga parallel va
π‘₯ = βˆ’π‘/2π‘Ž tenglamaga ega boβ€˜lgan vertikal toβ€˜gβ€˜ri chiziqdan tashkil

topgan paraboladan iboratdir. Agar π‘Ž > 0 boβ€˜lsa, parabola yuqoriga,
π‘Ž < 0 boβ€˜lsa, pastga yoβ€˜nalgan boβ€˜ladi.


Mustaqil yechish uchun topshiriqlar.


      1. QuyidΠ°gi gipΠ΅rbΠΎlΠ°lΠ°rning tΠ΅nglΠ°mΠ°lΠ°ri sΠΎddΠ° shΠ°klgΠ° kΠ΅ltirilsin:

1) 9π‘₯2 βˆ’ 25𝑦2 βˆ’ 18π‘₯ βˆ’ 100𝑦 βˆ’ 316 = 0;
2) 5π‘₯2 βˆ’ 6𝑦2 + 10π‘₯ βˆ’ 12𝑦 βˆ’ 31 = 0;
3) π‘₯2 βˆ’ 4𝑦2 + 6π‘₯ + 5 = 0.
MΠ°rkΠ°zlΠ°rining kΠΎΠΎrdinΠ°tΠ°lΠ°ri vΠ° oβ€˜qlΠ°ri tΠΎpilsin.

      1. Quyidagi tenglamalar bilan qanday egri chiziqlar berilganligi tekshirilsin:

1) π‘₯2 βˆ’ 2π‘₯𝑦 + 2𝑦2 βˆ’ 4π‘₯ βˆ’ 6𝑦 + 3 = 0;
2) π‘₯2 βˆ’ 2π‘₯𝑦 βˆ’ 2𝑦2 βˆ’ 4π‘₯ βˆ’ 6𝑦 + 3 = 0;
3) π‘₯2 βˆ’ 2π‘₯𝑦 + 𝑦2 βˆ’ 4π‘₯ βˆ’ 6𝑦 + 3 = 0;
4) π‘₯2 βˆ’ 2π‘₯𝑦 + 2𝑦2 βˆ’ 4π‘₯ βˆ’ 6𝑦 + 29 = 0;
5) π‘₯2 βˆ’ 2π‘₯𝑦 βˆ’ 2𝑦2 βˆ’ 4π‘₯ βˆ’ 6𝑦 βˆ’ 13 = 0.
3

      1. Quyidagi egri chiziqlarning turlari aniqlansin:

1) π‘₯2 + 6π‘₯𝑦 + 𝑦2 + 6π‘₯ + 2𝑦 βˆ’ 1 = 0;
2) 3π‘₯2 βˆ’ 2π‘₯𝑦 + 3𝑦2 + 4π‘₯ + 4𝑦 βˆ’ 4 = 0;
3) π‘₯2 βˆ’ 4π‘₯𝑦 + 3𝑦2 + 2π‘₯ βˆ’ 2𝑦 = 0;
4) 𝑦2 + 5π‘₯𝑦 βˆ’ 14π‘₯2 = 0;
5) π‘₯2 βˆ’ π‘₯𝑦 βˆ’ 𝑦2 βˆ’ π‘₯ βˆ’ 𝑦 = 0.

      1. Berilgan tenglamalarning chap tomonlarini koβ€˜paytuvchilarga ajratishdan foydalanib, tenglamalarning geometrik ma’nosi koβ€˜rsatilsin:

1) π‘₯𝑦 βˆ’ 𝑏π‘₯ βˆ’ π‘Žπ‘¦ + π‘Žπ‘ = 0;
2) π‘₯2 βˆ’ 2π‘₯𝑦 + 5π‘₯ = 0;
3) π‘₯2 βˆ’ 4π‘₯𝑦 + 4𝑦2 = 0;
4) 9π‘₯2 + 30π‘₯𝑦 + 25𝑦2 = 0;
5) 4π‘₯2 βˆ’ 12π‘₯𝑦 + 9𝑦2 βˆ’ 25 = 0.
5.1.5. 𝑦2 βˆ’ π‘₯𝑦 βˆ’ 5π‘₯ + 7𝑦 + 10 = 0 tenglamaning ikki (qoβ€˜sh) toβ€˜gβ€˜ri chiziqni ifodalashi tekshirilsin va bu toβ€˜gβ€˜ri chiziqlardan har birining tenglamasi topilsin.

      1. Quyidagi tenglama bilan berilgan ikkita toβ€˜gβ€˜ri chiziqdan har birining tenglamasi topilsin:

1) 21π‘₯2 + π‘₯𝑦 βˆ’ 10𝑦2 = 0;
2) π‘₯2 + 2π‘₯𝑦 + 𝑦2 + 2π‘₯ + 2𝑦 βˆ’ 4 = 0;
3) 𝑦2 βˆ’ 4π‘₯𝑦 βˆ’ 5𝑦2 + 5π‘₯ βˆ’ 𝑦 = 0;
4) 4π‘₯2 βˆ’ 4π‘₯𝑦 + 𝑦2 + 12π‘₯ βˆ’ 6𝑦 + 9 = 0.

      1. Egri chiziqlar tekshirilsin:

1) 2π‘₯2 + 3π‘₯𝑦 βˆ’ 5𝑦2 = 0;
2) π‘₯2 + 4π‘₯𝑦 + 4𝑦2 = 0;
3) 10π‘₯2 βˆ’ 7π‘₯𝑦 + 𝑦2 = 0;
4) 5π‘₯2 βˆ’ 4π‘₯𝑦 + 𝑦2 = 0.

      1. Invariantlardan foydalanib, quyidagi egri chiziq tenglamalari sodda shaklga keltirilsin:

1) π‘₯2 + 2π‘₯𝑦 βˆ’ 𝑦2 + 8π‘₯ + 4𝑦 βˆ’ 8 = 0;
2) 7π‘₯2 βˆ’ 24π‘₯𝑦 βˆ’ 38π‘₯ + 24𝑦 + 175 = 0;
3) 5π‘₯2 + 8π‘₯𝑦 + 5𝑦2 βˆ’ 18π‘₯ βˆ’ 18𝑦 + 9 = 0;
4) 5π‘₯2 + 12π‘₯𝑦 βˆ’ 22π‘₯ βˆ’ 12𝑦 βˆ’ 19 = 0;
5) 6π‘₯𝑦 + 8𝑦2 βˆ’ 12π‘₯ βˆ’ 26𝑦 + 11 = 0.
Bu egri chiziqlarning hammasi toβ€˜gβ€˜ri burchakli koordinatalar sistemasiga nisbatan berilgan.

      1. Invariantlardan foydalanib, quyidagi parabolalarning tenglamalari soddalashtirilsin:

1) π‘₯2 βˆ’ 2π‘₯𝑦 + 𝑦2 βˆ’ 10π‘₯ βˆ’ 6𝑦 + 25 = 0;
2) 4π‘₯2 βˆ’ 4π‘₯𝑦 + 𝑦2 βˆ’ 2π‘₯ βˆ’ 14𝑦 + 7 = 0;
3) π‘₯2 βˆ’ 2π‘₯𝑦 + 𝑦2 βˆ’ π‘₯ βˆ’ 2𝑦 + 3 = 0;
4) 4π‘₯2 βˆ’ 4π‘₯𝑦 + 𝑦2 βˆ’ π‘₯ βˆ’ 2 = 0.

πœ” = πœ‹
2
boβ€˜lgan hol uchun.

      1. Quyidagi egri chiziqlarning tenglamalari soddalashtirilsin:

1) π‘₯2 βˆ’ 3π‘₯𝑦 + 𝑦2 + 1 = 0, πœ” = 600;
2) 2π‘₯2 + 2𝑦2 βˆ’ 2π‘₯ βˆ’ 6𝑦 + 1 = 0, πœ” = 600;
3) 4π‘₯2 βˆ’ 4π‘₯𝑦 + 𝑦2 βˆ’ 4π‘₯ βˆ’ 4𝑦 + 7 = 0, πœ” = 1200.
5.1.11. Invariantlardan foydalanib, 8𝑦2 + 6π‘₯𝑦 βˆ’ 12π‘₯ βˆ’ 26𝑦 + 11 = 0
giperbolaning asimptotalariga nisbatan tenglamasi yozilsin. πœ” = 900.

      1. Toβ€˜gβ€˜ri burchakli koordinatalar sistemasiga nisbatan quyidagi tenglamalar bilan berilgan giperbolalarning asimptotalariga nisbatan yozilgan tenglamasi topilsin:

1) 2π‘₯2 + 3π‘₯𝑦 βˆ’ 2𝑦2 βˆ’ 8π‘₯ βˆ’ 11𝑦 = 0;
2) 4π‘₯2 + 2π‘₯𝑦 βˆ’ 𝑦2 + 6π‘₯ + 2𝑦 + 3 = 0;

3) 𝑦2 βˆ’ 2π‘₯𝑦 βˆ’ 4π‘₯ βˆ’ 2𝑦 βˆ’ 2 = 0.

      1. Biror toβ€˜gβ€˜ri burchakli koordinatalar sistemasiga nisbatan egri chiziq 5π‘₯2 + 2π‘₯𝑦 βˆ’ 22π‘₯ βˆ’ 12𝑦 βˆ’ 19 = 0 tenglama bilan ifodalanadi. Bu egri chiziqning oβ€˜z uchiga nisbatan tenglamasi topilsin.

      2. Quyidagi tenglamalarning har biri ellipsni ifodalasa, uning markazi boβ€˜lgan Π‘ nuqtaning koordinatasi, yarim oβ€˜qi, ekssentrisiteti va direktrisasi tenglamalarini tuzing:

1) 5π‘₯2 + 9𝑦2 βˆ’ 30π‘₯ + 18𝑦 + 9 = 0;
2) 16π‘₯2 + 25𝑦2 + 32π‘₯ βˆ’ 100𝑦 βˆ’ 284 = 0;
3) 4π‘₯2 + 3𝑦2 βˆ’ 8π‘₯ + 12𝑦 βˆ’ 32 = 0.

      1. Quyidagi tenglamalar giperbola hosil qilishini tekshirib va uning markazi boβ€˜lgan C nuqtaning koordinatasini, yarim oβ€˜qlarini, ekssentrisitetini, asimptota va direktrisa tenglamalarini tuzing:

1) 16π‘₯2 βˆ’ 9𝑦2 βˆ’ 64π‘₯ βˆ’ 54𝑦 βˆ’ 161 = 0;
2) 9π‘₯2 βˆ’ 16𝑦2 + 90π‘₯ + 32𝑦 βˆ’ 367 = 0;
3) 16π‘₯2 βˆ’ 9𝑦2 βˆ’ 64π‘₯ βˆ’ 18𝑦 + 199 = 0.

      1. Quyidagi chiziqlardan qaysilari: 1) yagona markazga; 2) koβ€˜p markazlarga; 3) markazga ega emasligini aniqlang.

1) 3π‘₯2 βˆ’ 4π‘₯𝑦 βˆ’ 2𝑦2 + 3π‘₯ βˆ’ 12𝑦 βˆ’ 7 = 0;
2) 4π‘₯2 + 5π‘₯𝑦 + 3𝑦2 βˆ’ π‘₯ + 9𝑦 βˆ’ 12 = 0;
3) 4π‘₯2 βˆ’ 4π‘₯𝑦 + 𝑦2 βˆ’ 6π‘₯ + 8𝑦 + 13 = 0;
4) 4π‘₯2 βˆ’ 4π‘₯𝑦 + 𝑦2 βˆ’ 12π‘₯ + 6𝑦 βˆ’ 11 = 0;
5) π‘₯2 βˆ’ 2π‘₯𝑦 + 4𝑦2 + 5π‘₯ βˆ’ 7𝑦 + 12 = 0;
6) π‘₯2 βˆ’ 2π‘₯𝑦 + 𝑦2 βˆ’ 6π‘₯ + 6𝑦 βˆ’ 3 = 0;
7) π‘₯2 βˆ’ 20π‘₯𝑦 + 25𝑦2 βˆ’ 14π‘₯ + 2𝑦 βˆ’ 15 = 0;
8) 4π‘₯2 βˆ’ 6π‘₯𝑦 βˆ’ 9𝑦2 + 3π‘₯ βˆ’ 7𝑦 + 12 = 0.

      1. Quyidagi berilgan chiziqlar markazga ega boβ€˜lsa, ularning markaziy nuqtalarini toping:

1) 3π‘₯2 + 5π‘₯𝑦 + 𝑦2 βˆ’ 8π‘₯ βˆ’ 11𝑦 βˆ’ 7 = 0;
2) 5π‘₯2 + 4π‘₯𝑦 + 2𝑦2 + 20π‘₯ + 20𝑦 βˆ’ 18 = 0;
3) 9π‘₯2 βˆ’ 4π‘₯𝑦 βˆ’ 7𝑦2 βˆ’ 12 = 0;
4) 2π‘₯2 βˆ’ 6π‘₯𝑦 + 5𝑦2 + 22π‘₯ βˆ’ 36𝑦 + 11 = 0.

      1. Quyidagi har bir chiziqning koβ€˜p markazli boβ€˜lishini tekshirib, ularning har biri uchun geometrik markazini aniqlaydigan tenglamasini tuzing:

1) π‘₯2 βˆ’ 6π‘₯𝑦 + 9𝑦2 βˆ’ 12π‘₯ + 36𝑦 + 20 = 0;
2) 4π‘₯2 + 4π‘₯𝑦 + 𝑦2 βˆ’ 8π‘₯ βˆ’ 4𝑦 βˆ’ 21 = 0;
3) 25π‘₯2 βˆ’ 10π‘₯𝑦 + 𝑦2 + 40π‘₯ βˆ’ 8𝑦 + 7 = 0.

      1. Quyidagi tenglamalar markaziy chiziqni ifodalashini tekshirib, ularning har birini koordinata boshiga koβ€˜chiruvchi tenglamasini tuzing:

1) 3π‘₯2 βˆ’ 6π‘₯𝑦 + 2𝑦2 βˆ’ 4π‘₯ + 2𝑦 + 1 = 0;
2) 6π‘₯2 + 4π‘₯𝑦 + 𝑦2 + 4π‘₯ βˆ’ 2𝑦 + 2 = 0;
3) 4π‘₯2 + 6π‘₯𝑦 + 𝑦2 βˆ’ 10π‘₯ βˆ’ 10 = 0;
4) 4π‘₯2 + 2π‘₯𝑦 + 6𝑦2 + 6π‘₯ βˆ’ 10𝑦 + 9 = 0.

      1. Ρ‚ va ΠΏ ning qanday qiymatlarida

π‘šπ‘₯2 + 12π‘₯𝑦 + 9𝑦2 + 4π‘₯ + 𝑛𝑦 βˆ’ 13 = 0
tenglama quyidagilarni aniqlaydi:
Π°) markaziy chiziqni; Π±) markazsiz chiziqni;
Π²) koβ€˜p markazli chiziqlarni.

      1. Parallel koβ€˜chirish yoβ€˜li bilan quyidagi tenglamalarning har birining turini aniqlab, sodda holga keltiring. Qanday geometrik shaklni ifodalashini toping. Eski va yangi koordinatalar sistemasida grafigini chizing.

1) 4π‘₯2 + 9𝑦2 βˆ’ 40π‘₯ + 36𝑦 + 100 = 0;
2) 9π‘₯2 βˆ’ 16𝑦2 βˆ’ 54π‘₯ βˆ’ 64𝑦 βˆ’ 127 = 0;
3) 9π‘₯2 + 4𝑦2 + 18π‘₯ βˆ’ 8𝑦 + 49 = 0;

      1. Quyidagi berilgan tenglamalarning har birini eng oddiy shaklga keltirib, ularning turini, qanday geometrik shaklni tasvirlashini, grafiklarning eski va yangi koordinata oβ€˜qlariga nisbatan joylashishini aniqlang:

1) 32π‘₯2 + 52π‘₯𝑦 βˆ’ 7𝑦2 + 180 = 0;
2) 5π‘₯2 βˆ’ 6π‘₯𝑦 + 5𝑦2 βˆ’ 32 = 0;
3) 17π‘₯2 βˆ’ 12π‘₯𝑦 + 8𝑦2 = 0;
4) 5π‘₯2 + 24π‘₯𝑦 βˆ’ 5𝑦2 = 0;
5) 5π‘₯2 βˆ’ 6π‘₯𝑦 + 5𝑦2 + 8 = 0.

      1. Quyidagi berilgan tenglamalarning har birini eng oddiy shaklga keltirib, ularning turini, qanday geometrik shaklni tasvirlashini, grafiklarning eski va yangi koordinata oβ€˜qlariga nisbatan joylashishini aniqlang:

1) 14π‘₯2 + 24π‘₯𝑦 + 21𝑦2 βˆ’ 4π‘₯ + 18𝑦 βˆ’ 139 = 0;
2) 11π‘₯2 βˆ’ 20π‘₯𝑦 βˆ’ 4𝑦2 βˆ’ 20π‘₯ βˆ’ 8𝑦 + 1 = 0;
3) 7π‘₯2 + 60π‘₯𝑦 + 32𝑦2 βˆ’ 14π‘₯ βˆ’ 60𝑦 + 7 = 0;
4) 50π‘₯2 βˆ’ 8π‘₯𝑦 + 35𝑦2 + 100π‘₯ βˆ’ 8𝑦 + 67 = 0;

      1. Quyidagi tenglamalarni koordinatalar sistemasini almashtirmasdan, har biri ellipsni ifodalashini va uning yarim oβ€˜qlardagi qiymatlarini toping:

1) 41π‘₯2 + 24π‘₯𝑦 + 9𝑦2 + 24π‘₯ + 18𝑦 βˆ’ 36 = 0;
2) 8π‘₯2 + 4π‘₯𝑦 + 5𝑦2 + 16π‘₯ + 4𝑦 βˆ’ 28 + 9 = 0;
3) 13π‘₯2 + 18π‘₯𝑦 + 37𝑦2 βˆ’ 26π‘₯ βˆ’ 18𝑦 + 3 = 0;
4) 13π‘₯2 + 10π‘₯𝑦 + 13𝑦2 + 46π‘₯ + 62𝑦 + 13 = 0.

      1. Koordinatalar sistemasini almashtirmasdan quyidagi tenglamalar bitta nuqtani ifodalashini isbotlang.

1) 5π‘₯2 βˆ’ 6π‘₯𝑦 + 2𝑦2 βˆ’ 2π‘₯ + 2 = 0;
2) π‘₯2 + 2π‘₯𝑦 + 2𝑦2 + 6𝑦 + 9 = 0;
3) 5π‘₯2 + 4π‘₯𝑦 + 𝑦2 βˆ’ 6π‘₯ βˆ’ 2𝑦 + 2 = 0;
4) π‘₯2 βˆ’ 6π‘₯𝑦 + 10𝑦2 + 10π‘₯ βˆ’ 32𝑦 + 26 = 0.

      1. Koordinatalar sistemasini almashtirmasdan, har biri giperbolani ifodalasa, uning yarim oβ€˜qlarining qiymatini toping:

1) 4π‘₯2 + 24π‘₯𝑦 + 11𝑦2 + 64π‘₯ + 42𝑦 + 51 = 0;
2) 12π‘₯2 + 26π‘₯𝑦 + 12𝑦2 βˆ’ 52π‘₯ βˆ’ 48𝑦 + 73 = 0;
3) 3π‘₯2 + 4π‘₯𝑦 βˆ’ 12π‘₯ + 16 = 0;
4) π‘₯2 βˆ’ 6π‘₯𝑦 βˆ’ 7𝑦2 + 10π‘₯ βˆ’ 30𝑦 + 23 = 0.

      1. Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri kesishgan toβ€˜gβ€˜ri chiziqlar juftligini (degenerat giperbola) belgilashini aniqlang va ularning tenglamalarini toping:

1) 3π‘₯2 + 4π‘₯𝑦 + 𝑦2 βˆ’ 2π‘₯ βˆ’ 1 = 0;
2) 3π‘₯2 βˆ’ 6π‘₯𝑦 + 8𝑦2 βˆ’ 4𝑦 βˆ’ 4 = 0;
3) π‘₯2 βˆ’ 4π‘₯𝑦 + 3𝑦2 = 0;
4) π‘₯2 + 4π‘₯𝑦 + 3𝑦2 βˆ’ 6π‘₯ βˆ’ 12𝑦 + 9 = 0.

      1. Quyidagi tenglamalarning har biri parabolik ekanligini aniqlang; ularning har birini eng oddiy shaklga keltiring; ular qanday geometrik tasvirlarni belgilashlarini aniqlang:

1) 9π‘₯2 + 24π‘₯𝑦 + 16𝑦2 βˆ’ 18π‘₯ + 226𝑦 + 209 = 0;
2) π‘₯2 βˆ’ 2π‘₯𝑦 + 𝑦2 βˆ’ 12π‘₯ + 12𝑦 βˆ’ 14 = 0;
3) 4π‘₯2 + 12π‘₯𝑦 + 9𝑦2 βˆ’ 4π‘₯ βˆ’ 6𝑦 + 1 = 0.

      1. Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri parabolani aniqlaganligini aniqlang va ushbu parabola parametrini toping:

1) 9π‘₯2 + 24π‘₯𝑦 + 16𝑦2 βˆ’ 120π‘₯ + 90𝑦 = 0;
2) 9π‘₯2 βˆ’ 24π‘₯𝑦 + 16𝑦2 βˆ’ 54π‘₯ βˆ’ 178𝑦 + 181 = 0;
3) π‘₯2 βˆ’ 2π‘₯𝑦 + 𝑦2 + 6π‘₯ βˆ’ 14𝑦 + 29 = 0;
4) 9π‘₯2 βˆ’ 6π‘₯𝑦 + 𝑦2 βˆ’ 50π‘₯ + 50𝑦 βˆ’ 275 = 0.

      1. Koordinatalar sistemasini almashtirmasdan, quyidagi tenglamalarning har biri bir juft parallel toβ€˜gβ€˜ri chiziqni belgilashini aniqlang va ularning tenglamalarini toping:

1) 4π‘₯2 + 4π‘₯𝑦 + 𝑦2 βˆ’ 12π‘₯ βˆ’ 6𝑦 + 5 = 0;
2) 4π‘₯2 βˆ’ 12π‘₯𝑦 + 9𝑦2 + 20π‘₯ βˆ’ 30𝑦 βˆ’ 11 = 0;
3) 25π‘₯2 βˆ’ 10π‘₯𝑦 + 𝑦2 + 10π‘₯ βˆ’ 2𝑦 βˆ’ 15 = 0.
Download 253.5 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling