Reja: Markazli egri chiziqning tenglamasini soddalashtirish


Download 253.5 Kb.
bet1/2
Sana25.07.2023
Hajmi253.5 Kb.
#1662478
  1   2
Bog'liq
MAVZU 5 ikki tartibli


MAVZU: IKKINCHI TARTIBLI CHIZIQLARNING TENGLAMALARINI SODDALASHTIRISH.


Reja:

  1. Markazli egri chiziqning tenglamasini soddalashtirish.

  2. Markazli egri chiziqning kanonik tenglamasini tekshirish.

  3. Markazsiz egri chiziqning tenglamasini soddalashtirish.

  4. Umumiy tenglama bilan berilgan ikkinchi tartibli chiziqlarni aniqlash va sinflarga ajratish.




  1. Markazli egri chiziqning tenglamasini soddalashtirish.


Ikkinchi tartibli egri chiziqning markazi koordinatalar boshida boβ€˜lgan holda uning tenglamasi
𝐴π‘₯2 + 2𝐡π‘₯1𝑦1 + 𝐢𝑦2 + 2𝑓(π‘Ž, 𝑏) = 0, (5.1)
1 1
bunda
2𝑓(π‘Ž, 𝑏) = π΄π‘Ž2 + 2π΅π‘Žπ‘ + 𝐢𝑏2 + 2π·π‘Ž + 2𝐸𝑏 + 𝐹. (5.2)
Oβ€˜zgaruvchi koordinatalarni π‘Ž, 𝑏 orqali faraz qilganda,
π‘“π‘Ž(π‘Ž, 𝑏) + π‘˜π‘“π‘(π‘Ž, 𝑏) = 0 (5.3) boβ€˜ladi. Izlangan geometrik oβ€˜rinning, ya’ni diametrning tenglamasi shundan iborat
π‘“π‘Ž(π‘Ž, 𝑏) = π΄π‘Ž + 𝐡𝑏 + 𝐷, 𝑓𝑏(π‘Ž, 𝑏) = π΅π‘Ž + 𝐢𝑏 + 𝐸 boβ€˜ladi. (5.3) ga asosan markazli egri chiziqning π‘Ž va 𝑏 koordinatalari ushbu sistema bilan aniqlangan edi:

{π΄π‘Ž + 𝐡𝑏 + 𝐷 = 0,
π΅π‘Ž + 𝐢𝑏 + 𝐸 = 0,
(5.4)

bulardan birinchisini π‘Ž ga va ikkinchisini 𝑏 ga koβ€˜paytirib, soβ€˜ngra
ularni qoβ€˜shamiz. Bu holda
π΄π‘Ž2 + 2π΅π‘Žπ‘ + 𝐢𝑏2 + π·π‘Ž + 𝐸𝑏 = 0
boβ€˜ladi. Buning ikkala tomoniga π·π‘Ž + 𝐸𝑏 + 𝐹 ni qoβ€˜shib, (5.2) ni e’tiborga olsak,
𝑓(π‘Ž, 𝑏) = π·π‘Ž + 𝐸𝑏 + 𝐹 (5.5)
boβ€˜ladi. Agar bundagi π‘Ž va 𝑏 ning oβ€˜rniga ularning ifodalari qoβ€˜yilsa:
𝐷2𝐢 + 𝐡𝐷𝐸 + 𝐴𝐸2 βˆ’ 𝐡𝐷𝐸

2𝑓(π‘Ž, 𝑏) =
𝐡2 βˆ’ 𝐴𝐢 + 𝐹 =

yoki
𝐷2𝐢 βˆ’ 2𝐡𝐷𝐸 + 𝐴𝐸2 + 𝐡2𝐹 βˆ’ 𝐴𝐢𝐹
= 𝐡2 βˆ’ 𝐴𝐢 ,
βˆ†
2𝑓(π‘Ž, 𝑏) = βˆ’ 𝐡2 βˆ’ 𝐴𝐢 . (5.6)

Shuning uchun (5.1) tenglamaning koβ€˜rinishi quyidagicha
boβ€˜ladi:

𝐴π‘₯2 + 2𝐡π‘₯ 𝑦
+ 𝐢𝑦2 = βˆ†
. (5.7)

1 1 1

1 𝐡2 βˆ’ 𝐴𝐢

Bu tenglamani yana soddalashtirish maqsadi bilan koordinata
oβ€˜qlarining yoβ€˜nalishlarini oβ€˜zgartiramiz, ya’ni biror, hozircha maβ€˜lum boβ€˜lmagan, ixtiyoriy burchakka aylantiramiz. Aylantirilgan burchak, ya’ni koordinata oβ€˜qlarining yangi va eski yoβ€˜nalishlar orasidagi burchak 𝛼 faraz qilinsa va egri chiziqning yangi sistemaga nisbatan oβ€˜zgaruvchi koordinatalari π‘₯ va 𝑦 faraz qilinsa, u holda almashtirish formulalari quyidagicha boβ€˜ladi:


{π‘₯1 = π‘₯π‘π‘œπ‘ π›Ό βˆ’ 𝑦𝑠𝑖𝑛𝛼,
𝑦1 = π‘₯𝑠𝑖𝑛𝛼 + π‘¦π‘π‘œπ‘ π›Ό.
(5.8)

Bularni (5.7) ga qoβ€˜yamiz:


𝐴(π‘₯π‘π‘œπ‘ π›Ό βˆ’ 𝑦𝑠𝑖𝑛𝛼)2 + 2𝐡(π‘₯π‘π‘œπ‘ π›Ό βˆ’ 𝑦𝑠𝑖𝑛𝛼)(π‘₯𝑠𝑖𝑛𝛼 + π‘¦π‘π‘œπ‘ π›Ό) +
+𝐢(π‘₯𝑠𝑖𝑛𝛼 + π‘¦π‘π‘œπ‘ π›Ό)2 = βˆ† ,
𝐡2 βˆ’ 𝐴𝐢
yoki bundagi qavslarni ochib, π‘₯2, π‘₯𝑦 va 𝑦2 li hadlari toβ€˜plab olinsa, uning koβ€˜rinishi quyidagicha boβ€˜ladi:
(π΄π‘π‘œπ‘ 2𝛼 + 2π΅π‘π‘œπ‘ π›Ό βˆ™ 𝑠𝑖𝑛𝛼 + 𝐢𝑠𝑖𝑛2𝛼)π‘₯2 + 2(βˆ’π΄π‘π‘œπ‘ π›Ό βˆ™ 𝑠𝑖𝑛𝛼 +
+π΅π‘π‘œπ‘ 2𝛼 βˆ’ 𝐡𝑠𝑖𝑛2𝛼 + 𝐢𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό)π‘₯𝑦 + (𝐴𝑠𝑖𝑛2𝛼 βˆ’

βˆ’2𝐡𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό + πΆπ‘π‘œπ‘ 2𝛼)𝑦2 = βˆ†
𝐡2 βˆ’ 𝐴𝐢
. (5.9)

Bu tenglamaning koeffitsiyentlarini quyidagicha ifoda qilamiz:
𝐴1 = π΄π‘π‘œπ‘ 2𝛼 + 2𝐡𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό + 𝐢𝑠𝑖𝑛2𝛼

{𝐡1 = βˆ’π΄π‘ π‘–π‘›π›Ό βˆ™ π‘π‘œπ‘ π›Ό + π΅π‘π‘œπ‘ 2𝛼 βˆ’ 𝐡𝑠𝑖𝑛2𝛼 + 𝐢𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό
𝐢1 = 𝐴𝑠𝑖𝑛2𝛼 βˆ’ 2𝐡𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό + πΆπ‘π‘œπ‘ 2𝛼
Bu holda (5.9) ning koβ€˜rinishi bunday boβ€˜ladi:
(5.10)

𝐴1
π‘₯2 + 2𝐡1
π‘₯𝑦 + 𝐢1
𝑦2 = βˆ†
𝐡2 βˆ’ 𝐴𝐢
. (5.11)

(5.10) dagi ifodalardan birinchisi bilan uchinchisini qoβ€˜shsak:
𝐴1 + 𝐢1 = 𝐴 + 𝐢 (5.12)
va birinchisidan uchinchisini ayirsak:
𝐴1 βˆ’ 𝐢1 =
= 𝐴(π‘π‘œπ‘ 2𝛼 βˆ’ 𝑠𝑖𝑛2𝛼) + 4𝐡𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό βˆ’ 𝐢(π‘π‘œπ‘ 2𝛼 βˆ’ 𝑠𝑖𝑛2𝛼) =
= (𝐴 βˆ’ 𝐢)(π‘π‘œπ‘ 2𝛼 βˆ’ 𝑠𝑖𝑛2𝛼) + 4𝐡𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό;
π‘π‘œπ‘ 2𝛼 βˆ’ 𝑠𝑖𝑛2𝛼 = π‘π‘œπ‘ 2𝛼, 2𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό = 𝑠𝑖𝑛2𝛼
boβ€˜lgani uchun

yoki
𝐴1 βˆ’ 𝐢1 = (𝐴 βˆ’ 𝐢)π‘π‘œπ‘ 2𝛼 + 2𝐡𝑠𝑖𝑛2𝛼,
𝐡1 = 𝐡(π‘π‘œπ‘ 2𝛼 βˆ’ 𝑠𝑖𝑛2𝛼) βˆ’ (𝐴 βˆ’ 𝐢)𝑠𝑖𝑛𝛼 βˆ™ π‘π‘œπ‘ π›Ό, (5.13)

yoki
𝐡1


= π΅π‘π‘œπ‘ 2𝛼 βˆ’ 1 (𝐴 βˆ’ 𝐢)𝑠𝑖𝑛2𝛼, (5.14)
2


1
4𝐡2 = 4𝐡2π‘π‘œπ‘ 22𝛼 βˆ’ 4𝐡(𝐴 βˆ’ 𝐢)𝑠𝑖𝑛2𝛼 βˆ™ π‘π‘œπ‘ 2𝛼 + (𝐴 βˆ’ 𝐢)2𝑠𝑖𝑛22𝛼,
(5.15)
(𝐴1 βˆ’ 𝐢1)2 = (𝐴 βˆ’ 𝐢)2π‘π‘œπ‘ 22𝛼 + 4𝐡(𝐴 βˆ’ 𝐢)𝑠𝑖𝑛2𝛼 βˆ™ π‘π‘œπ‘ 2𝛼 +
+4𝐡2𝑠𝑖𝑛22𝛼 (5.16)
(5.15) va (5.16) ni qoβ€˜shganda

1
(𝐴1 βˆ’ 𝐢1)2 + 4𝐡2 = (𝐴 βˆ’ 𝐢)2 + 4𝐡2.
Soβ€˜ngi ifodadan (5.12) ning kvadratini ayirib olamiz:
(𝐴1 βˆ’ 𝐢1)2 βˆ’ (𝐴1 + 𝐢1)2 + 4𝐡2 = (𝐴 βˆ’ 𝐢)2 βˆ’ (𝐴 + 𝐢)2 + 4𝐡2,
yoki

1
βˆ’4𝐴1𝐢1 + 4𝐡2 = 4𝐴𝐢 + 4𝐡2,


  1. Markazsiz egri chiziqning tenglamasini soddalashtirish.


Egri chiziqning markazi cheksiz uzoqda boβ€˜lgan holda
𝑀 = 𝐡2 βˆ’ 𝐴𝐢 = 0 yoki 𝐴𝐢 = 𝐡2 (5.30) boβ€˜ladi. Ikkinchi tartibli egri chiziqning umumiy tenglamasini olib uning ikkila tomonini 𝐴 ga koβ€˜paytiramiz:
𝐴2π‘₯2 + 2𝐴𝐡π‘₯𝑦 + 𝐴𝐢𝑦2 + 𝐴(2𝐷π‘₯ + 2𝐸𝑦 + 𝐹) = 0
yoki (5.30) ga asosan:
(𝐴π‘₯ + 𝐡𝑦)2 + 𝐴(2𝐷π‘₯ + 2𝐸𝑦 + 𝐹) = 0. (5.31) Tenglamani soddalashtirish maqsadi bilan koordinata oβ€˜qlarining yoβ€˜nalishlarini oβ€˜zgartiramiz, masalan, uni biror 𝛼 burchakka
aylantiramiz. Bu holda almashtirish formulalari quyidagicha boβ€˜ladi:

{ π‘₯ = π‘₯1π‘π‘œπ‘ π›Ό βˆ’ 𝑦1𝑠𝑖𝑛𝛼
𝑦 = π‘₯1𝑠𝑖𝑛𝛼 + 𝑦1π‘π‘œπ‘ π›Ό.
Bularni (5.31) formulaga qoβ€˜yilsa:
[𝐴(π‘₯1π‘π‘œπ‘ π›Ό βˆ’ 𝑦1𝑠𝑖𝑛𝛼) + 𝐡(π‘₯1𝑠𝑖𝑛𝛼 + 𝑦1π‘π‘œπ‘ π›Ό)]2 +
(5.32)

+𝐴[2𝐷(π‘₯1π‘π‘œπ‘ π›Ό βˆ’ 𝑦1𝑠𝑖𝑛𝛼) + 2𝐸(π‘₯1𝑠𝑖𝑛𝛼 + 𝑦1π‘π‘œπ‘ π›Ό) + 𝐹] = 0
yoki
[(π΄π‘π‘œπ‘ π›Ό + 𝐡𝑠𝑖𝑛𝛼)π‘₯1 + (π΅π‘π‘œπ‘ π›Ό βˆ’ 𝐴𝑠𝑖𝑛𝛼)𝑦1]2 +
+𝐴[2(π·π‘π‘œπ‘ π›Ό + 𝐸𝑠𝑖𝑛𝛼)π‘₯1 + 2(πΈπ‘π‘œπ‘ π›Ό βˆ’ 𝐷𝑠𝑖𝑛𝛼)𝑦1 + 𝐹] = 0.
(5.33)
Hozirgacha 𝛼 ixtiyoriy burchak edi. Endi uning qiymatini shunday aniqlaymizki,

yoki
π΄π‘π‘œπ‘ π›Ό + 𝐡𝑠𝑖𝑛𝛼 = 0


𝐴
𝑑𝑔𝛼 = βˆ’


𝐡
(5.34)

boβ€˜lsin. Buni e’tiborga olib,
𝑁 = (π΅π‘π‘œπ‘ π›Ό βˆ’ 𝐴𝑠𝑖𝑛𝛼)2
{𝑃 = 𝐴(π·π‘π‘œπ‘ π›Ό + 𝐸𝑠𝑖𝑛𝛼)
𝑄 = 𝐴(πΈπ‘π‘œπ‘ π›Ό βˆ’ 𝐷𝑠𝑖𝑛𝛼)
𝑅 = 𝐴𝐹
faraz qilinsa, (5.33) tenglamaning koβ€˜rinishi bunday boβ€˜ladi:
(5.35)


1
𝑁𝑦2 + 2𝑃π‘₯1 + 2𝑄𝑦1 + 𝑅 = 0 (5.36) (5.34) ga asosan 𝑑𝑔𝛼 ma’lum boβ€˜lgani uchun uning yordami bilan hamma vaqt (5.35) dagi 𝑠𝑖𝑛𝛼 va π‘π‘œπ‘ π›Ό ni aniqlash mumkin. Demak (5.36) ning hamma koeffitsiyentlari ma’lum boβ€˜ladi.

(5.36) tenglamani yana soddalashtirish maqsadi bilan koordinatalar boshini biror (π‘Ž, 𝑏) nuqtaga koβ€˜chiramiz. Bu holda almashtirish formulalari
π‘₯1 = π‘₯ + π‘Ž, 𝑦1 = 𝑦 + 𝑏
boβ€˜ladi va (5.36) ning koβ€˜rinishi
𝑁(𝑦 + 𝑏)2 + 2𝑃(π‘₯ + π‘Ž) + 2𝑄(𝑦 + 𝑏) + 𝑅 = 0
yoki
𝑁𝑦2 + 2(𝑁𝑏 + 𝑄)𝑦 + 2𝑃π‘₯ + (𝑁𝑏2 + 2π‘ƒπ‘Ž + 2𝑄𝑏 + 𝑅) = 0 (5.37) boβ€˜ladi. Nuqtaning π‘Ž va 𝑏 koordinatalariga shunday qiymat tayin qilamizki,
𝑁𝑏 + 𝑄 = 0, 𝑁𝑏2 + 2π‘ƒπ‘Ž + 2𝑄𝑏 + 𝑅 = 0
boβ€˜lsin. Bu esa

yoki
𝑄
𝑏 = βˆ’
𝑁
π‘£π‘Ž
𝑄2


𝑁
+ 2π‘ƒπ‘Ž βˆ’
2𝑄2



𝑁
+ 𝑄 = 0

𝑄2 βˆ’ 𝑁𝑅



2π‘ƒπ‘π‘Ž βˆ’ 𝑄2 + 𝑁𝑅 = 0 π‘¦π‘œπ‘˜π‘– π‘Ž =


2𝑃𝑁𝐡

boβ€˜lgan holda mumkin. Bu chogβ€˜da (5.32) ning koβ€˜rinishi bunday
boβ€˜ladi:

yoki
𝑁𝑦2


+ 2𝑃π‘₯ = 0 π‘¦π‘œπ‘˜π‘– 𝑦2

𝑃
= βˆ’2 𝑃


𝑁
π‘₯, (5.38)

faraz qilinsa,


βˆ’ = 𝑝
𝑁

𝑦2 = 2𝑝π‘₯ (5.39)
boβ€˜ladi va bu parabolani ifoda qiladi.
𝑝 ning qiymatini aniqlash uchun (5.34) dan 𝑠𝑖𝑛𝛼 va π‘π‘œπ‘ π›Ό ning qiymatlarini aniqlashga toβ€˜gβ€˜ri keladi. Buning uchun (5.34) ni

𝑠𝑖𝑛𝛼 𝐴
= βˆ’
π‘π‘œπ‘ π›Ό 𝐡
π‘¦π‘œπ‘˜π‘–
𝑠𝑖𝑛𝛼



βˆ’π΄
π‘π‘œπ‘ π›Ό
=
𝐡

kabi yozib, undan ushbu hosila proportsiyani tuzamiz:

Demak
𝑠𝑖𝑛𝛼



βˆ’π΄
π‘π‘œπ‘ π›Ό
=
𝐡



βˆšπ‘ π‘–π‘›2𝛼 + π‘π‘œπ‘ 2𝛼
=
√𝐴2 + 𝐡2
1
= .
√𝐴2 + 𝐡2

βˆ’π΄ 𝐡
𝑠𝑖𝑛𝛼 = , π‘π‘œπ‘ π›Ό = . (5.40)
√𝐴2 + 𝐡2 √𝐴2 + 𝐡2

(5.36) ga muvofiq
𝐴𝐡𝐷 βˆ’ 𝐴2𝐸
𝑃 =
√𝐴2 + 𝐡2
, 𝑁 = (

𝐴2 + 𝐡2 2


)
√𝐴2 + 𝐡2
= 𝐴2 + 𝐡2.

Demak
𝑃

𝐴(𝐴𝐸 βˆ’ 𝐡𝐷)





𝐴2(𝐴𝐸 βˆ’ 𝐡𝐷)2



𝑝 = βˆ’ = = √
𝑁 (𝐴2 + 𝐡2)√𝐴2 + 𝐡2
(𝐴2 + 𝐡2)3 =



𝐴2(𝐴2𝐸2 βˆ’ 2𝐴𝐡𝐷𝐸 + 𝐡2𝐷2)
= √ (𝐴2 + 𝐡2)3 =

𝐴2(𝐴2𝐸2 βˆ’ 2𝐴𝐡𝐷𝐸 + 𝐴𝐢𝐷2)


= √ (𝐴2 + 𝐴𝐢)3 =


(βˆ’π΄πΈ2 + 2𝐡𝐷𝐸 βˆ’ 𝐢𝐷2) βˆ†



= βˆšβˆ’
(𝐴 + 𝐢)3 = βˆšβˆ’ (𝐴 + 𝐢)3 ;


chunki 𝐡2 βˆ’ 𝐴𝐢 = 0 boβ€˜lganda βˆ†= βˆ’π΄πΈ2 + 2𝐡𝐷𝐸 βˆ’ 𝐢𝐷2 boβ€˜ladi. Natijada
βˆ†
𝑝 = βˆšβˆ’ (𝐴 + 𝐢)3 . (5.41)
𝐡2 = 𝐴𝐢 boβ€˜lgani uchun 𝐴 va 𝐢 ning ishoralari bir xil boβ€˜ladi. 𝐴 ning ishorasini hamma vaqt musbat qilish mumkin. Shuning uchun (𝐴 + 𝐢) ni musbat faraz qilib boβ€˜ladi. Ikkinchi tomondan
βˆ†= βˆ’π΄πΈ2 + 2𝐡𝐷𝐸 βˆ’ 𝐢𝐷2 = βˆ’(𝐴𝐸2 + 𝐢𝐷2 βˆ’ 2𝐡𝐷𝐸) =
= βˆ’(𝐴𝐸2 + 𝐢𝐷2 βˆ’ 2𝐷𝐸√𝐴𝐢) = βˆ’(𝐸√𝐴 βˆ’ 𝐷√𝐢)2 < 0.
Shuning uchun parabolaning diskriminanti hamma vaqt manfiy boβ€˜ladi va radikal ostida musbat son boβ€˜ladi. Demak, 𝑝 βˆ’ hamma vaqt mavjud va musbat sondan iborat.
Shuning bilan, tekshirishimizning natijasini ushbu jadval bilan tasvirlash mumkin:
𝐴π‘₯2 + 2𝐡π‘₯𝑦 + 𝐢𝑦2 + 2𝐷π‘₯ + 2𝐸𝑦 + 𝐹 = 0,
𝐴 𝐡 𝐷
βˆ†= |𝐡 𝐢 𝐸|,
𝐷 𝐸 𝐹
𝑀 = 𝐡2 βˆ’ 𝐴𝐢.







𝑀 < 0

𝑀 > 0

𝑀 = 0

βˆ†β‰  0

𝐴 βˆ™ βˆ†< 0

Ellips

Giperbola



Parabola


𝐴 βˆ™ βˆ†> 0

Mavhum ellips

βˆ†= 0




Ikkita bir – birini kesuvchi mavhum toβ€˜gβ€˜ri chiziq

Ikkita bir – birini kesuvchi haqiqiy toβ€˜gβ€˜ri chiziq

Ikkita parallel toβ€˜gβ€˜ri chiziq




      1. Download 253.5 Kb.

        Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan Β©fayllar.org 2025
ma'muriyatiga murojaat qiling