Reja: Markazli egri chiziqning tenglamasini soddalashtirish
Download 253.5 Kb.
|
1 2
Bog'liqMAVZU 5 ikki tartibli
- Bu sahifa navigatsiya:
- Markazsiz egri chiziqning tenglamasini soddalashtirish.
MAVZU: IKKINCHI TARTIBLI CHIZIQLARNING TENGLAMALARINI SODDALASHTIRISH. Reja:
Ikkinchi tartibli egri chiziqning markazi koordinatalar boshida boβlgan holda uning tenglamasi π΄π₯2 + 2π΅π₯1π¦1 + πΆπ¦2 + 2π(π, π) = 0, (5.1) 1 1 bunda 2π(π, π) = π΄π2 + 2π΅ππ + πΆπ2 + 2π·π + 2πΈπ + πΉ. (5.2) Oβzgaruvchi koordinatalarni π, π orqali faraz qilganda, ππ(π, π) + πππ(π, π) = 0 (5.3) boβladi. Izlangan geometrik oβrinning, yaβni diametrning tenglamasi shundan iborat ππ(π, π) = π΄π + π΅π + π·, ππ(π, π) = π΅π + πΆπ + πΈ boβladi. (5.3) ga asosan markazli egri chiziqning π va π koordinatalari ushbu sistema bilan aniqlangan edi: {π΄π + π΅π + π· = 0, π΅π + πΆπ + πΈ = 0, (5.4) bulardan birinchisini π ga va ikkinchisini π ga koβpaytirib, soβngra ularni qoβshamiz. Bu holda π΄π2 + 2π΅ππ + πΆπ2 + π·π + πΈπ = 0 boβladi. Buning ikkala tomoniga π·π + πΈπ + πΉ ni qoβshib, (5.2) ni eβtiborga olsak, π(π, π) = π·π + πΈπ + πΉ (5.5) boβladi. Agar bundagi π va π ning oβrniga ularning ifodalari qoβyilsa: π·2πΆ + π΅π·πΈ + π΄πΈ2 β π΅π·πΈ 2π(π, π) = π΅2 β π΄πΆ + πΉ = yoki π·2πΆ β 2π΅π·πΈ + π΄πΈ2 + π΅2πΉ β π΄πΆπΉ = π΅2 β π΄πΆ , β 2π(π, π) = β π΅2 β π΄πΆ . (5.6) Shuning uchun (5.1) tenglamaning koβrinishi quyidagicha boβladi: π΄π₯2 + 2π΅π₯ π¦ + πΆπ¦2 = β . (5.7) 1 1 1 1 π΅2 β π΄πΆ Bu tenglamani yana soddalashtirish maqsadi bilan koordinata oβqlarining yoβnalishlarini oβzgartiramiz, yaβni biror, hozircha maβlum boβlmagan, ixtiyoriy burchakka aylantiramiz. Aylantirilgan burchak, yaβni koordinata oβqlarining yangi va eski yoβnalishlar orasidagi burchak πΌ faraz qilinsa va egri chiziqning yangi sistemaga nisbatan oβzgaruvchi koordinatalari π₯ va π¦ faraz qilinsa, u holda almashtirish formulalari quyidagicha boβladi: {π₯1 = π₯πππ πΌ β π¦π πππΌ, π¦1 = π₯π πππΌ + π¦πππ πΌ. (5.8) Bularni (5.7) ga qoβyamiz: π΄(π₯πππ πΌ β π¦π πππΌ)2 + 2π΅(π₯πππ πΌ β π¦π πππΌ)(π₯π πππΌ + π¦πππ πΌ) + +πΆ(π₯π πππΌ + π¦πππ πΌ)2 = β , π΅2 β π΄πΆ yoki bundagi qavslarni ochib, π₯2, π₯π¦ va π¦2 li hadlari toβplab olinsa, uning koβrinishi quyidagicha boβladi: (π΄πππ 2πΌ + 2π΅πππ πΌ β π πππΌ + πΆπ ππ2πΌ)π₯2 + 2(βπ΄πππ πΌ β π πππΌ + +π΅πππ 2πΌ β π΅π ππ2πΌ + πΆπ πππΌ β πππ πΌ)π₯π¦ + (π΄π ππ2πΌ β β2π΅π πππΌ β πππ πΌ + πΆπππ 2πΌ)π¦2 = β π΅2 β π΄πΆ . (5.9) Bu tenglamaning koeffitsiyentlarini quyidagicha ifoda qilamiz: π΄1 = π΄πππ 2πΌ + 2π΅π πππΌ β πππ πΌ + πΆπ ππ2πΌ {π΅1 = βπ΄π πππΌ β πππ πΌ + π΅πππ 2πΌ β π΅π ππ2πΌ + πΆπ πππΌ β πππ πΌ πΆ1 = π΄π ππ2πΌ β 2π΅π πππΌ β πππ πΌ + πΆπππ 2πΌ Bu holda (5.9) ning koβrinishi bunday boβladi: (5.10) π΄1 π₯2 + 2π΅1 π₯π¦ + πΆ1 π¦2 = β π΅2 β π΄πΆ . (5.11) (5.10) dagi ifodalardan birinchisi bilan uchinchisini qoβshsak: π΄1 + πΆ1 = π΄ + πΆ (5.12) va birinchisidan uchinchisini ayirsak: π΄1 β πΆ1 = = π΄(πππ 2πΌ β π ππ2πΌ) + 4π΅π πππΌ β πππ πΌ β πΆ(πππ 2πΌ β π ππ2πΌ) = = (π΄ β πΆ)(πππ 2πΌ β π ππ2πΌ) + 4π΅π πππΌ β πππ πΌ; πππ 2πΌ β π ππ2πΌ = πππ 2πΌ, 2π πππΌ β πππ πΌ = π ππ2πΌ boβlgani uchun yoki π΄1 β πΆ1 = (π΄ β πΆ)πππ 2πΌ + 2π΅π ππ2πΌ, π΅1 = π΅(πππ 2πΌ β π ππ2πΌ) β (π΄ β πΆ)π πππΌ β πππ πΌ, (5.13) yoki
= π΅πππ 2πΌ β 1 (π΄ β πΆ)π ππ2πΌ, (5.14) 2 1 4π΅2 = 4π΅2πππ 22πΌ β 4π΅(π΄ β πΆ)π ππ2πΌ β πππ 2πΌ + (π΄ β πΆ)2π ππ22πΌ, (5.15) (π΄1 β πΆ1)2 = (π΄ β πΆ)2πππ 22πΌ + 4π΅(π΄ β πΆ)π ππ2πΌ β πππ 2πΌ + +4π΅2π ππ22πΌ (5.16) (5.15) va (5.16) ni qoβshganda 1 (π΄1 β πΆ1)2 + 4π΅2 = (π΄ β πΆ)2 + 4π΅2. Soβngi ifodadan (5.12) ning kvadratini ayirib olamiz: (π΄1 β πΆ1)2 β (π΄1 + πΆ1)2 + 4π΅2 = (π΄ β πΆ)2 β (π΄ + πΆ)2 + 4π΅2, yoki 1 β4π΄1πΆ1 + 4π΅2 = 4π΄πΆ + 4π΅2,
Egri chiziqning markazi cheksiz uzoqda boβlgan holda π = π΅2 β π΄πΆ = 0 yoki π΄πΆ = π΅2 (5.30) boβladi. Ikkinchi tartibli egri chiziqning umumiy tenglamasini olib uning ikkila tomonini π΄ ga koβpaytiramiz: π΄2π₯2 + 2π΄π΅π₯π¦ + π΄πΆπ¦2 + π΄(2π·π₯ + 2πΈπ¦ + πΉ) = 0 yoki (5.30) ga asosan: (π΄π₯ + π΅π¦)2 + π΄(2π·π₯ + 2πΈπ¦ + πΉ) = 0. (5.31) Tenglamani soddalashtirish maqsadi bilan koordinata oβqlarining yoβnalishlarini oβzgartiramiz, masalan, uni biror πΌ burchakka aylantiramiz. Bu holda almashtirish formulalari quyidagicha boβladi: { π₯ = π₯1πππ πΌ β π¦1π πππΌ π¦ = π₯1π πππΌ + π¦1πππ πΌ. Bularni (5.31) formulaga qoβyilsa: [π΄(π₯1πππ πΌ β π¦1π πππΌ) + π΅(π₯1π πππΌ + π¦1πππ πΌ)]2 + (5.32) +π΄[2π·(π₯1πππ πΌ β π¦1π πππΌ) + 2πΈ(π₯1π πππΌ + π¦1πππ πΌ) + πΉ] = 0 yoki [(π΄πππ πΌ + π΅π πππΌ)π₯1 + (π΅πππ πΌ β π΄π πππΌ)π¦1]2 + +π΄[2(π·πππ πΌ + πΈπ πππΌ)π₯1 + 2(πΈπππ πΌ β π·π πππΌ)π¦1 + πΉ] = 0. (5.33) Hozirgacha πΌ ixtiyoriy burchak edi. Endi uning qiymatini shunday aniqlaymizki, yoki
π΄
π΅ (5.34) boβlsin. Buni eβtiborga olib, π = (π΅πππ πΌ β π΄π πππΌ)2 {π = π΄(π·πππ πΌ + πΈπ πππΌ) π = π΄(πΈπππ πΌ β π·π πππΌ) π = π΄πΉ faraz qilinsa, (5.33) tenglamaning koβrinishi bunday boβladi: (5.35) 1 ππ¦2 + 2ππ₯1 + 2ππ¦1 + π = 0 (5.36) (5.34) ga asosan π‘ππΌ maβlum boβlgani uchun uning yordami bilan hamma vaqt (5.35) dagi π πππΌ va πππ πΌ ni aniqlash mumkin. Demak (5.36) ning hamma koeffitsiyentlari maβlum boβladi. (5.36) tenglamani yana soddalashtirish maqsadi bilan koordinatalar boshini biror (π, π) nuqtaga koβchiramiz. Bu holda almashtirish formulalari π₯1 = π₯ + π, π¦1 = π¦ + π boβladi va (5.36) ning koβrinishi π(π¦ + π)2 + 2π(π₯ + π) + 2π(π¦ + π) + π = 0 yoki ππ¦2 + 2(ππ + π)π¦ + 2ππ₯ + (ππ2 + 2ππ + 2ππ + π ) = 0 (5.37) boβladi. Nuqtaning π va π koordinatalariga shunday qiymat tayin qilamizki, ππ + π = 0, ππ2 + 2ππ + 2ππ + π = 0 boβlsin. Bu esa yoki π π = β π π£π π2 π + 2ππ β 2π2 π + π = 0 π2 β ππ 2πππ β π2 + ππ = 0 π¦πππ π = 2πππ΅ yoki
+ 2ππ₯ = 0 π¦πππ π¦2 π
π π₯, (5.38) faraz qilinsa, β = π π π¦2 = 2ππ₯ (5.39) boβladi va bu parabolani ifoda qiladi. π ning qiymatini aniqlash uchun (5.34) dan π πππΌ va πππ πΌ ning qiymatlarini aniqlashga toβgβri keladi. Buning uchun (5.34) ni π πππΌ π΄ = β πππ πΌ π΅ π¦πππ π πππΌ βπ΄ πππ πΌ = π΅ kabi yozib, undan ushbu hosila proportsiyani tuzamiz: Demak π πππΌ βπ΄ πππ πΌ = π΅ βπ ππ2πΌ + πππ 2πΌ = βπ΄2 + π΅2 1 = . βπ΄2 + π΅2 βπ΄ π΅ π πππΌ = , πππ πΌ = . (5.40) βπ΄2 + π΅2 βπ΄2 + π΅2 (5.36) ga muvofiq π΄π΅π· β π΄2πΈ π = βπ΄2 + π΅2 , π = ( π΄2 + π΅2 2 ) βπ΄2 + π΅2 = π΄2 + π΅2. Demak π π΄(π΄πΈ β π΅π·) π΄2(π΄πΈ β π΅π·)2 π = β = = β π (π΄2 + π΅2)βπ΄2 + π΅2 (π΄2 + π΅2)3 = π΄2(π΄2πΈ2 β 2π΄π΅π·πΈ + π΅2π·2) = β (π΄2 + π΅2)3 = π΄2(π΄2πΈ2 β 2π΄π΅π·πΈ + π΄πΆπ·2) = β (π΄2 + π΄πΆ)3 = (βπ΄πΈ2 + 2π΅π·πΈ β πΆπ·2) β = ββ (π΄ + πΆ)3 = ββ (π΄ + πΆ)3 ; chunki π΅2 β π΄πΆ = 0 boβlganda β= βπ΄πΈ2 + 2π΅π·πΈ β πΆπ·2 boβladi. Natijada β π = ββ (π΄ + πΆ)3 . (5.41) π΅2 = π΄πΆ boβlgani uchun π΄ va πΆ ning ishoralari bir xil boβladi. π΄ ning ishorasini hamma vaqt musbat qilish mumkin. Shuning uchun (π΄ + πΆ) ni musbat faraz qilib boβladi. Ikkinchi tomondan β= βπ΄πΈ2 + 2π΅π·πΈ β πΆπ·2 = β(π΄πΈ2 + πΆπ·2 β 2π΅π·πΈ) = = β(π΄πΈ2 + πΆπ·2 β 2π·πΈβπ΄πΆ) = β(πΈβπ΄ β π·βπΆ)2 < 0. Shuning uchun parabolaning diskriminanti hamma vaqt manfiy boβladi va radikal ostida musbat son boβladi. Demak, π β hamma vaqt mavjud va musbat sondan iborat. Shuning bilan, tekshirishimizning natijasini ushbu jadval bilan tasvirlash mumkin: π΄π₯2 + 2π΅π₯π¦ + πΆπ¦2 + 2π·π₯ + 2πΈπ¦ + πΉ = 0, π΄ π΅ π· β= |π΅ πΆ πΈ|, π· πΈ πΉ π = π΅2 β π΄πΆ.
|
1 2
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan Β©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling