Reja: Matritsalar va ular ustida amallar
Download 0.95 Mb.
|
Matritsalar ustida amallar
- Bu sahifa navigatsiya:
- Matritsalar va ular ustida amallar
Mavzu: Matritsalar ustida amallar Bajardi: O’rmonova O’. O’ Qabul qildi: Yunusova S. T. Reja:Matritsalar va ular ustida amallar. 1 2 3 Matritsaning rangi. Matritsalarni ko’paytirish, teskari matritsani topish. Matritsalar va ular ustida amallar𝑚 × 𝑛 dona 𝑎𝑖𝑗 (𝑖 = 1, 𝑚, 𝑗 = 1, 𝑛) elementlardan tuzilgan to’g’ri burchakli jadval matritsa deyiladi va
ko’rinishda yoziladi. Matritsaning elementlari ikkita indesklar bilan belgilanadi. Elementning birinchi 𝑖 indeksi satr nomini, ikkinchi 𝑗 indeks esa ustunning nomerini bildiradi. Matritsaning 𝑎𝑖𝑗 elementi 𝑖 − satr va 𝑗 − ustun kesishgan joyda joylashgan. Matritsalar odatda katta lotin harflari bilan belgilanadi: 𝐴, 𝐵, 𝐶, . . . Matritsalar va ular ustida amallarAgar matritsa 𝑚 ta satr va 𝑛 ta ustunga ega bo’lsa, u holda ta’rifga binoan, bu matritsa 𝑚 × 𝑛 o’lchovga ega bo’ladi. Zaruriyat bo’lganida matritsani 𝐴𝑚×𝑛 ko’rinishda ham belgilaymiz. Agar matritsaning 𝑎𝑖𝑗 elementlari sonlar bo’lsa, bunday matritsa sonli matritsa deyiladi; agar matritsaning 𝑎𝑖𝑗 elementlari funksiyalar bo’lsa, bunday matritsa funksional matritsa deyiladi; 𝑎𝑖𝑗 elementlar vektorlar bo’lganda esa, vektor matritsa deyiladi va hokazo. Matritsalar va ular ustida amallarAgar 𝐴 va 𝐵 matritsalarning mos 𝑎𝑖𝑗 va 𝑏𝑖𝑗 elementlari bir-biriga teng, ya`ni 𝑎𝑖𝑗 = 𝑏𝑖𝑗 bo’lsa, bunday 𝐴 va 𝐵 matritsalar teng matritsalar deyiladi. Faqat bir xil o’lchovli matritsalargina bir-biriga teng bo’lishi mumkin. Har xil o’lchovli matritsalarning bir-biriga teng bo’lishi yoki teng emasligi tushunchalari kiritilmagan. Satrlarining soni ustunlarining soniga teng bo’lgan (𝑚 = 𝑛) matritsalar kvadrat matritsalar deyiladi. Agar 𝑖 = 1 bo’lsa, u holda satr-matritsaga ega bo’lamiz; agar 𝑗 = 1 bo’lsa, biz ustun-matritsaga ega bo’lamiz. Ular mos ravishda satr-vektor va ustun-vektor ham deb ataladi. Matritsalar va ular ustida amallarMatritsalar ustidagi asosiy amallarni o’rganamiz. Matritsalarni qo’shish va ayirish. Bu amallarni faqat bir xil o’lchovli matritsalar ustida bajarish mumkin. 𝐴 va 𝐵 matritsalarning yig’indisi (ayirmasi) 𝐴 + 𝐵 (𝐴 − 𝐵) bilan belgilanadi. 𝐴 va 𝐵 matritsalarning 𝐴 + 𝐵 (𝐴 − 𝐵) yig’indisi (ayirmasi) deb shunday 𝐶 matritsaga aytiladiki, 𝐶 matritsaning elementlari 𝑐𝑖𝑗 = 𝑎𝑖𝑗 ± 𝑏𝑖𝑗 dan iboratdir, bu yerda 𝑎𝑖𝑗 va 𝑏𝑖𝑗 - mos ravishda 𝐴 va 𝐵 matritsalarning elementlari. Matritsalar va ular ustida amallarMasalan, ikkita
matritsalar berilgan bo’lsin. U holda 𝐴 + 𝐵 = 1 + (−2) 2 + 3 −3 + 8 6 + 4 −4 + 7 = 9 + (−11) −1 10 5 3 5 −2 , 𝐴 − 𝐵 = 1 − (−2) 2 − 3 −3 − 8 6 − 4 −4 − 7 9 − (−11) = 3 2 −1 −11 −11 20 . Download 0.95 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling