Резервирование ресурсов


Download 151.06 Kb.
bet5/5
Sana18.06.2023
Hajmi151.06 Kb.
#1578157
TuriПротокол
1   2   3   4   5
Bog'liq
TE rus

Инжиниринг трафика
Список ключевых слов: методы инжиниринга трафика, качество обслуживания, альтернативные маршруты, распараллеливание потока, топология «рыба», предложенная нагрузка, агрегированные потоки, классы трафика, фоновый и оперативный режимы.
При рассмотрении системы обеспечения качества обслуживания, основанной на резервировании, мы не стали затрагивать вопрос маршрутов следования потоков через сеть. Точнее, мы считали, что они каким-то образом выбраны, причем этот выбор делается без учета требований QoS. И в условиях заданности маршрутов мы старались обеспечить прохождение по этим маршрутам такого набора потоков, для которого можно гарантировать соблюдение требований QoS.
Очевидно, что задачу поддержки требований QoS можно решить более эффективно, если считать, что маршруты следования трафика не фиксированы, а также подлежат выбору. Это позволило бы сети обслуживать больше потоков с гарантиями QoS при тех же характеристиках самой сети, то есть пропускной способности каналов и производительности коммутаторов и маршрутизаторов.
Задачу выбора маршрутов для потоков (или классов) трафика с учетом соблюдения требований QoS решают методы инжиниринга трафика (Traffic Engineering, ТЕ). С помощью этих методов стремятся добиться еще одной цели — по возможности максимально и сбалансировано загрузить все ресурсы сети, чтобы сеть при заданном уровне качества обслуживания обладала как можно боле высокой суммарной производительностью.
Методы ТЕ, как и другие рассмотренные ранее методы, основаны на резервировании ресурсов. То есть они не только позволяют найти рациональный маршрут для потока, но и резервируют для него пропускную способность ресурсов сети, находящихся вдоль этого маршрута.
Методы инжиниринга трафика являются сравнительно новыми для сетей с коммутацией пакетов. Это объясняется во многом тем, что передача эластичного трафика не предъявляла строгих требований к параметрам QoS. Кроме того, Интернет долгое время не являлся коммерческой сетью, поэтому максимальное использование ресурсов не считалось первоочередной задачей для IP-технологий, лежащих в основе Интернета.
Сегодня ситуация изменилась. Сети с коммутацией пакетов должны передавать различные виды трафика с заданным качеством обслуживания, максимально используя возможности своих ресурсов. Однако для этого им нужно изменить некоторые, ставшие уже традиционными, подходы к выбору маршрутов.

Недостатки традиционных методов маршрутизации


Основным принципом работы протоколов маршрутизации в сетях с коммутацией пакетов вот уже долгое время является выбор маршрута на основе топологии сети без учета информации о ее текущей загрузке.
Для каждой пары «адрес источника — адрес назначения» такие протоколы выбирают единственный маршрут, не принимая во внимание информационные потоки, протекающие через сеть. В результате все потоки между парами конечных узлов сети идут по кратчайшему (в соответствии с некоторой метрикой) маршруту. Выбранный маршрут может быть более рациональным, например, если в расчет принимается номинальная пропускная способность каналов связи или вносимые ими задержки, либо менее рациональным, если учитывается только количество промежуточных маршрутизаторов между исходным и конечным узлами.
Внимание. Традиционные методы маршрутизации рассматривают наилучший выбранный маршрут в качестве единственно возможного, даже если существуют другие, хотя и несколько худшие маршруты.
Классическим примером неэффективности такого подхода является так называемая «рыба» — сеть с топологией, приведенной на рис. 7.14. Несмотря на то что между коммутаторами А и Е существует два пути (верхний — через коммутатор В и нижний — через коммутаторы С и D), весь трафик от коммутатора А к коммутатору Е в соответствии с традиционными принципами маршрутизации направляется по верхнему пути. Только потому, что нижний путь немного (на один ретрансляционный участок) длиннее, чем верхний, он игнорируется, хотя мог бы работать «параллельно» с верхним путем.



Рис. 7.14. Неэффективность кратчайших путей


Такой подход приводит к тому, что даже если кратчайший путь перегружен, пакеты все равно посылаются по этому пути. Так, в сети, представленной на рис. 7.14, верхний путь будет продолжать использоваться даже тогда, когда его ресурсов перестанет хватать для обслуживания трафика от коммутатора А к коммутатору Е, а нижний путь будет простаивать, хотя, возможно, ресурсов коммутаторов В и С хватило бы для качественной передачи этого трафика.


Налицо явная ущербность методов распределения ресурсов сети — одни ресурсы работают с перегрузкой, а другие не используются вовсе. Традиционные методы борьбы с перегрузками эту проблему решить не могут, нужны качественно иные механизмы.

Методы инжиниринга трафика


Исходными данными для методов инжиниринга трафика являются:

  • характеристики передающей сети — ее топология, а также производительность составляющих ее коммутаторов и линий связи (рис. 7.15);

  • сведения о предложенной нагрузке сети, то есть о потоках трафика, которые сеть должна передать между своими пограничными коммутаторами (рис. 7.16).

Пусть производительность процессора каждого коммутатора достаточна для обслуживания трафика всех его входных интерфейсов, даже если трафик поступает на интерфейс с максимально возможной скоростью, равной пропускной способности интерфейса. Поэтому при резервировании ресурсов будем считать ресурсами пропускную способность линий связи между коммутаторами, которая определяет также пропускную способность двух интерфейсов, связанных этой линией.



Рис. 7.15. Топология сети и производительность ее ресурсов





Рис. 7.16. Предложенная нагрузка


Каждый поток характеризуется точкой входа в сеть, точкой выхода из сети и профилем трафика. Для получения оптимальных решений можно использовать детальное описание каждого потока, например учитывать величину возможной пульсации трафика или требования QoS. Однако поскольку количественно оценить их влияние на работу сети достаточно сложно, а влияние этих параметров на характеристики QoS менее значимо, то для нахождения субоптимального распределения путей прохождения потоков через сеть, как правило, учитываются только их средние скорости передачи данных, что и показано на рис. 7.16.


Методы ТЕ чаще работают не с отдельными потоками, а с агрегированными потоками, которые являются объединением нескольких потоков. Так как мы ищем общий маршрут для нескольких потоков, то агрегировать можно только потоки, имеющие общие точки входа в сеть и выхода из сети. Агрегированное задание потоков позволяет упростить задачу выбора путей, так как при индивидуальном рассмотрении каждого пользовательского потока промежуточные коммутаторы должны хранить слишком большие объемы информации, поскольку индивидуальных потоков может быть очень много. Необходимо, однако, подчеркнуть, что агрегирование отдельных потоков в один возможно только в том случае, когда все составляющие потоки предъявляют одни и те же требования к качеству обслуживания. Далее в этом разделе мы будем для краткости пользоваться термином «поток» как для индивидуального потока, так и для агрегированного, поскольку принципы ТЕ от этого не меняются.
Задача ТЕ состоит в определении маршрутов прохождения потоков трафика через сеть, то есть для каждого потока требуется найти точную последовательность промежуточных коммутаторов и их интерфейсов. При этом маршруты должны быть такими, чтобы все ресурсы сети были нагружены до максимально возможного уровня, а каждый поток получал требуемое качество обслуживания.
Максимальный уровень использования ресурсов выбирается таким образом, чтобы механизмы контроля перегрузки могли обеспечить требуемое качество обслуживания. Это означает, что для эластичного трафика максимальное значение выбирается не больше, чем 0,9, а для чувствительного к задержкам трафика — не больше, чем 0,5. Так как обычно резервирование производится не для всех потоков, то нужно оставить часть пропускной способности для свободного использования. Поэтому приведенные максимальные значения обычно уменьшают до 0,75 и 0,25 соответственно. Для упрощения рассуждений мы будем считать далее, что в сети передается один вид трафика, а потом покажем, как обобщить методы ТЕ для случая трафика нескольких типов.
Существуют различные формальные математические определения задачи ТЕ. Мы здесь ограничимся наиболее простым определением, тем более что сегодня оно чаще всего используется на практике.
Будем считать, что решением задачи ТЕ является такой набор маршрутов для заданного множества потоков трафика, для которого все значения коэффициентов использования ресурсов вдоль маршрута следования каждого потока не превышают некоторого заданного порога Kmax.
На рис. 7.17 показано одно из возможных решений задачи, иллюстрируют которую рис. 7.15 и 7.16. Найденные маршруты гарантируют, что максимальный коэффициент использования любого ресурса для любого потока не превышает 0,6.



Рис. 7.17. Распределение нагрузки по сети — выбор


путей передачи трафика

Решение задачи ТЕ можно искать по-разному. Во-первых, можно искать его заблаговременно, в фоновом режиме. Для этого нужно знать исходные данные: топологию и производительность сети, а также входные и выходные точки потоков трафика и среднюю скорость передачи данных в них. После этого задачу рационального распределения путей следования трафика при фиксированных точках входа и выхода, а также заданном уровне максимального значения коэффициента использования ресурса можно передать некоторой программе, которая, например, с помощью направленного перебора вариантов найдет решение. Результатом работы программы будут точные маршруты для каждого потока с указанием всех промежуточных коммутаторов.


Во-вторых, можно решать задачу ТЕ в оперативном режиме, поручив ее самим коммутаторам сети. Для этого используются модификации стандартных протоколов маршрутизации. Модификация протоколов маршрутизации состоит в том, что они сообщают друг другу не только топологическую информацию, но и текущее значение свободной пропускной способности у каждого ресурса.
После того как решение найдено, нужно его реализовать, то есть воплотить в таблицах маршрутизации. На этом этапе может возникнуть проблема — в том случае, если мы хотим проложить эти маршруты в дейтаграммной сети. Дело в том, что таблицы маршрутизации этих сетей учитывают только адреса назначения пакетов. Коммутаторы и маршрутизаторы таких сетей (например, IP-сетей) не работают с потоками, для них поток в явном виде не существует, каждый пакет при его продвижении является независимой единицей коммутации. Можно сказать, что таблицы продвижения этих сетей отражают только топологию сети (направления продвижения к определенным адресам назначения).
Поэтому привнесение методов резервирования в дейтаграммные сети происходит с большими трудностями. В протоколах резервирования, подобных упомянутому ранее протоколу RSVP, используется некоторый дополнительный набор признаков помимо адреса назначения, чтобы определить поток для дейтаграммного маршрутизатора. При этом понятие потока требуется только на этапе резервирования, а при продвижении пакетов по-прежнему работает традиционная для этого типа сетей схема, учитывающая только адрес назначения.
Теперь представим ситуацию, когда у нас имеется несколько потоков между двумя конечными узлами, и мы хотим направить их по разным маршрутам. Мы приняли такое решение, исходя из баланса загрузки сети, когда решали задачу инжиниринга трафика. Дейтаграммный коммутатор или маршрутизатор не имеет возможности реализовать наше решение, потому что для всех этих потоков у него в таблице продвижения есть только одна запись, соответствующая общему адресу назначения пакетов этих потоков. Изменять логику работы коммутаторов и маршрутизаторов дейтаграммных сетей достаточно нецелесообразно, поскольку это слишком принципиальная модернизация.
Поэтому методы инжиниринга трафика сегодня используются только в сетях с виртуальными каналами, для которых не составляет труда реализовать найденное решение для группы потоков. Каждому потоку (или группе потоков с одинаковыми маршрутами) выделяется виртуальный канал, который прокладывается в соответствии с выбранным маршрутом. Методы инжиниринга трафика успешно применяются в сетях ATM и Frame Relay, работающих на основе техники виртуальных каналов. IP-сети также опираются на методы ТЕ, когда те используются в сетях ATM или Frame Relay, работающих в составной сети, построенной на основе протокола IP. Существует также новая технология MPLS, которая разработана специально в качестве средства привнесения техники виртуальных каналов в IP-сети. На основе технологии MPLS в IP-сетях можно также решать задачи ТЕ.
Мы рассмотрим особенности методов ТЕ для каждой отдельной технологии при детальном изучении этих технологий в следующих частях книги.

Инжиниринг трафика различных классов


При решении задачи инжиниринга трафика мы считали, что все потоки трафика предъявляли одинаковые требования к качеству обслуживания. То есть пользователей сети удовлетворяло, что все потоки обслуживаются с заданной средней скоростью (она, естественно, у каждого потока своя, отличающаяся от других).
Более реальной является ситуация, когда у каждого пользователя сети имеется несколько классов трафика, и эти классы отличаются разными требованиями к качеству обслуживания. Мы уже обсуждали эту проблему при рассмотрении вопросов резервирования ресурсов.
Методы ТЕ, учитывающие наличие в сети трафика с различными требованиями QoS, решают проблему точно так же, как и методы резервирования ресурсов отдельных узлов. Если у нас имеется, например, два класса трафика, то мы задаемся двумя уровнями максимального использования ресурсов.
Для достижения такого результата с каждым ресурсом должно быть связано два счетчика свободной пропускной способности — один для приоритетного трафика, второй для эластичного трафика. При определении возможности прохождения маршрута через конкретный ресурс для приоритетного трафика средняя интенсивность нового потока должна сравниваться со свободной пропускной способностью для приоритетного трафика.
Если свободной пропускной способности достаточно и новый поток будет проходить через данный интерфейс, то значение средней скорости передачи данных для нового потока необходимо вычесть как из счетчика загрузки приоритетного трафика, так и из счетчика загрузки эластичного трафика, так как приоритетный трафик всегда будет обслуживаться перед эластичным и создаст дополнительную нагрузку для эластичного трафика. Если же задача ТЕ решается для эластичного трафика, то его средняя скорость передачи данных сравнивается со свободной пропускной способностью счетчика эластичного трафика и в случае положительного решения значение этой скорости вычитается только из счетчика эластичного трафика, так как для приоритетного трафика эластичный трафик прозрачен.
Модифицированные протоколы маршрутизации должны распространять по сети информацию о двух параметрах свободной пропускной способности — для каждого класса трафика отдельно. Если же задача обобщается для случая передачи через сеть трафика нескольких классов, то, соответственно, с каждым ресурсом должно быть связано столько счетчиков, сколько классов трафика существует в сети, а протоколы маршрутизации должны распространять вектор свободных пропускных способностей соответствующей размерности.
Download 151.06 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling