Robototexnikada sun’iy intellekt texnologiyalari va vositasi fanidan


Download 112.53 Kb.
bet3/4
Sana03.06.2024
Hajmi112.53 Kb.
#1899227
1   2   3   4
Bog'liq
5-amaliy robo

Neyron Tarmoq Turlari

1. Perseptron


Minsky-Papert perseptron modeli eng oddiy va eng qadimgi neyron modellaridan biridir. Bu neyron tarmoqning eng kichik birligi bo'lib, kiruvchi ma'lumotlarda xususiyatlarni yoki biznes razvedkasini aniqlash uchun ma'lum hisob-kitoblarni amalga oshiradi. U vaznli ma'lumotlarni oladi va yakuniy natijaga erishish uchun faollashtirish funksiyasini qo'llaydi. TLU (eshik mantiq birligi) perseptronning boshqa nomidir.

Perceptron ikkilik klassifikator bo'lib, ma'lumotlarni ikki guruhga bo'ladigan nazorat qilinadigan o'quv tizimidir. Mantiq eshiklari AND, OR va NAND kabilar perseptronlar yordamida amalga oshirilishi mumkin.

2. Oldinga Uzatish Neyron Tarmog'i


Kirish ma'lumotlari faqat bir yo'nalishda oqadigan neyron tarmoqlarning eng asosiy versiyasi sun'iy neyron tugunlari orqali o'tadi va chiqish tugunlari orqali chiqadi. Yashirin qatlamlar mavjud yoki bo'lmasligi mumkin bo'lgan joylarda kirish va chiqish qatlamlari mavjud. Ularni bir qatlamli yoki ko'p qatlamli oldinga uzatiladigan neyron tarmoq sifatida tavsiflash mumkin.

Amaldagi qatlamlar soni funktsiyaning murakkabligi bilan belgilanadi. U faqat bir yo'nalishda oldinga tarqaladi va orqaga tarqalmaydi. Bu erda og'irliklar doimiy bo'lib qoladi. Faollashtirish funktsiyasini ta'minlash uchun kirishlar og'irliklarga ko'paytiriladi. Buning uchun tasnifni faollashtirish funktsiyasi yoki bosqichli faollashtirish funksiyasidan foydalaniladi.

3. Ko‘p Qavatli Perseptron


Murakkablarga kirish neyron tarmoqlari, unda kirish ma'lumotlari sun'iy neyronlarning ko'p qatlamlari orqali yo'naltiriladi. Bu butunlay bog'langan neyron tarmoqdir, chunki har bir tugun keyingi qatlamdagi barcha neyronlarga ulangan. Kirish va chiqish qatlamlarida bir nechta yashirin qatlamlar, ya'ni kamida uch yoki undan ortiq qatlamlar mavjud.

U ikki tomonlama tarqalishga ega, ya'ni u oldinga va orqaga tarqala oladi. Kirishlar og'irliklarga ko'paytiriladi va faollashtirish funktsiyasiga yuboriladi, bu erda ular yo'qotishni minimallashtirish uchun orqaga tarqalish orqali o'zgartiriladi.
Og'irliklar oddiy qilib aytganda, Neyron tarmoqlaridan mashina tomonidan o'rganilgan qiymatlardir. Kutilayotgan natijalar va o'quv kirishlari o'rtasidagi nomutanosiblikka qarab, ular o'z-o'zidan sozlanadi. Softmax chiziqli bo'lmagan faollashtirish funktsiyalaridan keyin chiqish qatlamini faollashtirish funktsiyasi sifatida ishlatiladi.

4. Konvolyutsion Neyron Tarmoq


An'anaviy ikki o'lchovli massivdan farqli o'laroq, konvolyutsion neyron tarmog'i neyronlarning uch o'lchovli konfiguratsiyasiga ega. Birinchi qatlam konvolyutsion qatlam sifatida tanilgan. Konvolyutsion qatlamdagi har bir neyron faqat ko'rish maydonining cheklangan qismidagi ma'lumotlarni qayta ishlaydi. Filtr kabi, kiritish xususiyatlari ommaviy rejimda olinadi.
Tarmoq bo'limlardagi rasmlarni tushunadi va butun tasvirni qayta ishlashni tugatish uchun bu amallarni bir necha marta bajarishi mumkin.

Rasm qayta ishlash jarayonida RGB yoki HSI dan kulrang rangga o'zgartiriladi. Piksel qiymatining keyingi o'zgarishlari qirralarni aniqlashga yordam beradi va rasmlarni bir nechta guruhlarga ajratish mumkin. Bir yo'nalishli tarqalish CNN bir yoki bir nechta konvolyutsion qatlamlarni o'z ichiga olgan holda sodir bo'ladi, shundan so'ng birlashma va ikki tomonlama tarqalish konvolyutsiya qatlamining chiqishi tasvirni tasniflash uchun to'liq ulangan neyron tarmoqqa yuborilganda sodir bo'ladi.
Tasvirning ayrim elementlarini ajratib olish uchun filtrlardan foydalaniladi. MLP da kirishlar o'lchanadi va faollashtirish funktsiyasiga kiritiladi. RELU konvolyutsiyada ishlatiladi, MLP esa chiziqli bo'lmagan faollashtirish funktsiyasidan so'ng softmaxdan foydalanadi. Rasm va videoni aniqlash, semantik tahlil qilish va parafrazni aniqlashda konvolyutsion neyron tarmoqlar ajoyib natijalar beradi.

5. Radial Bias Tarmog'i


Kirish vektoridan keyin RBF neyronlari qatlami va Radial Basis Function Networkdagi har bir toifa uchun bitta tugunli chiqish qatlami keladi. Kirish har bir neyron prototipini saqlaydigan o'quv majmuasidagi ma'lumotlar nuqtalari bilan taqqoslash yo'li bilan tasniflanadi. Bu o'quv majmuasining misollaridan biridir.

Har bir neyron yangi kirish vektori [siz turkumlashtirmoqchi bo'lgan n o'lchovli vektor] tasniflanishi kerak bo'lganda, kirish va uning prototipi o'rtasidagi Evklid masofasini hisoblab chiqadi. Agar bizda ikkita sinf mavjud bo'lsa, A sinfi va B sinfi, toifaga kiritiladigan yangi kirish B sinf prototiplariga qaraganda A sinf prototiplariga ko'proq o'xshaydi.
Natijada, u A sinfi sifatida etiketlanishi yoki tasniflanishi mumkin.

6. Takrorlanuvchi Neyron Tarmoq


Takroriy neyron tarmoqlari qatlamning chiqishini saqlash va keyin qatlam natijalarini prognoz qilish uchun uni kirishga qaytarish uchun mo'ljallangan. Oldinga uzatish neyron tarmoq odatda boshlang'ich qatlam bo'lib, undan keyin takrorlanuvchi neyron tarmoq qatlami bo'lib, bu erda xotira funktsiyasi oldingi vaqt bosqichida mavjud bo'lgan ma'lumotlarning bir qismini eslab qoladi.

Ushbu stsenariy oldinga tarqalishdan foydalanadi. Bu kelajakda kerak bo'ladigan ma'lumotlarni saqlaydi. Agar bashorat noto'g'ri bo'lsa, o'rganish tezligi kichik tuzatishlar kiritish uchun ishlatiladi. Natijada, orqaga tarqalish davom etar ekan, u tobora aniqroq bo'ladi.

Ilovalar


Neyron tarmoqlar turli fanlar bo'yicha ma'lumotlar muammolarini hal qilish uchun ishlatiladi; ba'zi misollar quyida ko'rsatilgan.

  1. Yuzni tanib olish - Yuzni tanish echimlari samarali kuzatuv tizimlari bo'lib xizmat qiladi. Tanish tizimlari raqamli fotosuratlarni inson yuzlari bilan bog'laydi. Ular tanlab kirish uchun ofislarda qo'llaniladi. Shunday qilib, tizimlar inson yuzini tekshiradi va uni ma'lumotlar bazasida saqlangan identifikatorlar ro'yxati bilan taqqoslaydi.

  2. Aktsiyalarni bashorat qilish - investitsiyalar bozor xatarlariga duchor bo'ladi. Qimmatbaho qog'ozlar bozorida kelajakdagi o'zgarishlarni oldindan aytish deyarli qiyin. Neyron tarmoqlardan oldin doimiy o'zgaruvchan buqa va pasayish fazalarini oldindan aytib bo'lmaydi. Ammo hamma narsani nima o'zgartirdi? Albatta, biz neyron tarmoqlar haqida gapirayapmiz... Ko'p qatlamli Perceptron MLP (oldinga uzatiladigan sun'iy intellekt tizimining bir turi) real vaqt rejimida muvaffaqiyatli aksiyalar prognozini yaratish uchun ishlatiladi.

  3. Ijtimoiy Media - Qanchalik jo'shqin ko'rinishidan qat'i nazar, ijtimoiy media mavjudlikning oddiy yo'lini o'zgartirdi. Ijtimoiy tarmoq foydalanuvchilarining xatti-harakatlari sun'iy neyron tarmoqlar yordamida o'rganiladi. Raqobat tahlili uchun har kuni virtual o'zaro ta'sirlar orqali taqdim etiladigan ma'lumotlar yig'iladi va tekshiriladi. Ijtimoiy tarmoq foydalanuvchilarining xatti-harakatlari neyron tarmoqlar tomonidan takrorlanadi. Ma'lumotlar ijtimoiy media tarmoqlari orqali tahlil qilingandan so'ng, odamlarning xatti-harakatlari odamlarning xarajatlari bilan bog'lanishi mumkin. Ijtimoiy media ilovalaridagi ma'lumotlar Multilayer Perceptron ANN yordamida qazib olinadi.

  4. Sog'liqni saqlash - Bugungi dunyoda odamlar sog'liqni saqlash sanoatida texnologiya afzalliklaridan foydalanmoqda. Sog'liqni saqlash sohasida konvolyutsion neyron tarmoqlar rentgen nurlarini aniqlash, kompyuter tomografiyasi va ultratovush tekshiruvi uchun ishlatiladi. Yuqorida aytib o'tilgan testlardan olingan tibbiy tasvirlash ma'lumotlari neyron tarmoq modellari yordamida baholanadi va baholanadi, chunki CNN tasvirni qayta ishlashda qo'llaniladi. Ovozni aniqlash tizimlarini ishlab chiqishda takroriy neyron tarmog'i (RNN) ham qo'llaniladi.

  5. Ob-havo hisoboti - Sun'iy intellektni amalga oshirishdan oldin, meteorologiya bo'limining prognozlari hech qachon aniq bo'lmagan. Ob-havo prognozi asosan kelajakda sodir bo'ladigan ob-havo sharoitlarini bashorat qilish uchun amalga oshiriladi. Zamonaviy davrda tabiiy ofatlar ehtimolini oldindan bilish uchun ob-havo prognozlaridan foydalaniladi. Ob-havoni prognozlash ko'p qatlamli perseptron (MLP), konvolyutsion neyron tarmoqlari (CNN) va takroriy neyron tarmoqlari (RNN) yordamida amalga oshiriladi.

  6. Mudofaa - Logistika, qurolli hujum tahlili va ob'ektning joylashuvi neyron tarmoqlardan foydalanadi. Ular, shuningdek, havo va dengiz patrullarida, shuningdek, avtonom dronlarni boshqarishda ishlaydi. Sun'iy intellekt mudofaa sanoatiga o'z texnologiyasini kengaytirish uchun zarur bo'lgan ko'makni beradi. Suv osti minalarining mavjudligini aniqlash uchun konvolyutsion neyron tarmoqlari (CNN) qo'llaniladi.

Afzalliklari 


  • Neyron tarmog'idagi bir nechta neyronlar to'g'ri ishlamasa ham, neyron tarmoqlar baribir chiqishlarni ishlab chiqaradi.

  • Neyron tarmoqlar real vaqt rejimida o'rganish va o'zgaruvchan sozlamalarga moslashish qobiliyatiga ega.

  • Neyron tarmoqlar turli vazifalarni bajarishni o'rganishi mumkin. Taqdim etilgan ma'lumotlarga asoslanib, to'g'ri natijani ta'minlash.

  • Neyron tarmoqlar bir vaqtning o'zida bir nechta vazifalarni bajarish uchun kuch va qobiliyatga ega.

Kamchiliklari 


  • Neyron tarmoqlar muammolarni hal qilish uchun ishlatiladi. Tarmoqlarning murakkabligi tufayli o'z qarorlarini "nima uchun va qanday qilib" qilganligi haqidagi tushuntirishni oshkor etmaydi. Natijada, tarmoq ishonchini yo'qotishi mumkin. 

  • Neyron tarmog'ining tarkibiy qismlari bir-biriga bog'liqdir. Ya'ni, neyron tarmoqlar etarli hisoblash kuchiga ega bo'lgan kompyuterlarni talab qiladi (yoki ularga juda ishonadi).

  • Neyron tarmoq jarayonining o'ziga xos qoidasi (yoki asosiy qoidasi) yo'q. Sinov va xato usulida tarmoqning to'g'ri tuzilishi optimal tarmoqqa urinish orqali o'rnatiladi. Bu juda nozik sozlashni talab qiladigan protsedura.

Xulosa


Neyron tarmoqlari sohasi  tez kengaymoqda. Ular bilan shug'ullanish uchun ushbu sektordagi tushunchalarni o'rganish va tushunish juda muhimdir.

Download 112.53 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling